
A/UX® System Administrator's Reference
Sections 1M, 7, and 8

.®
A/UX® System Administrator's Reference
Sections 1M, 7, and 8

030-0779

• APPLE COMPUTER, INC.

© 1990, Apple Computer, Inc., and
UniSoft Corporation. All rights
reserved.

Portions of this document have been
previously copyrighted by AT&T
Information Systems and the Regents
of the University of California, and are
reproduced with permission. Under
the copyright laws, this manual may
not be copied, in whole or part,
without the written consent of Apple
or UniSoft. The same proprietary and
copyright notices must be afftxed to
any permitted copies as were afftxed to
the original. Under the law, copying
includes translating into another
language or format.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the "keyboard" Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, A/UX,
ImageWriter, LaserWriter, and
Macintosh are registered trademarks of
Apple Computer, Inc.

B-NET is a registered trademark of
UniSoft Corporation.

DEC is a trademark of Digital
Equipment Corporation.

Diablo and Ethernet are registered
trademarks of Xerox Corporation.

Hewlett-Packard 2631 is a trademark of
Hewlett -Packard.

030-0779

MacPaint is a registered trademark of
Claris Corporation.

POSTSCRIPT is a registered trademark,
and TRANSCRIPT is a trademark, of
Adobe Systems, Incorporated.

UNIX is a registered trademark of
AT&T Information Systems.

Simultaneously published in the
United States and Canada.

LIMITED WARRAN1Y ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, Apple
will replace the media or manual at
no charge to you provided you return
the item to be replaced with proof of
purchase to Apple or an authorized
Apple dealer during the 90-day period
after you purchased the software. In
addition, Apple will replace damaged
software media and manuals for as
long as the software product is
included in Apple's Media Exchange
Program. While not an upgrade or
update method, this program offers
additional protection for up to two
years or more from the date of your
original purchase. See your
authorized Apple dealer for program
coverage and details. In some
countries the replacement period
may be different, check with your
authorized Apple dealer.

All IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABIIJTY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
UMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANlY OR REPRESENTATION,
ErrHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABIIJTY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
"AS IS," AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
UABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE W ARRANlY AND REMEDIES
SET FORm ABOVE ARE EXCLUSIVE
AND IN LIEU OF All OmERS, ORAL
OR WRfITEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

030-0779

A/UX System Administrator's Reference

Contents

Preface

Introduction

Section 1M

Section 7

Section 8

Revision C

System Maintenance Commands

Drivers and Interfaces for Devices

Stand-Alone Commands

- v-

Preface

Conventions Used in This Manual
NUX® manuals follow certain conventions regarding presentation of
information. Words or terms that require special emphasis appear in
specific fonts within the text of the manual. The following sections
explain the conventions used in this manual.

Significant fonts
Words that you see on the screen or that you must type exactly as
shown appear in Courier font. For example, when you begin an
NUX work session, you see the following on the screen:

login:

The text shows login: in Courier typeface to indicate that it
appears on the screen. If the next step in the manual is

Enter start

start appears in Courier to indicate that you must type in the
word. Words that you must replace with a value appropriate to a
particular set of circumstances appear in italics. Using the example just
described, if the next step in the manual is

login: username

you type in your name-Laura, for example- so the screen shows:

login: Laura

Key presses
Certain keys are identified with names on the keyboard. These modifier
and character keys perform functions, often in combination with other
keys. In the manuals, the names of these keys appear in the format of
an Initial Capital letter followed by SMALL CAPITAL letters.

The list that follows provides the most common keynames.

RETURN

OPTION

DELETE
CAPS LOCK

For example, if you enter

Revision C

- vii -

SHIff

CONTROL
ESCAPE

Applee

instead of

Apple

you would position the cursor to the right of the word and press the
DELETE key once to erase the additional e.

For cases in which you use two or more keys together to perform a
specific function, the keynames are shown connected with hyphens.
For example, if you see

Press CONTROL-C

you must press CONTROL and C simultaneously (CONTROL-C normally
cancels the execution of the current command).

Terminology
In NUX manuals, a certain term can represent a specific set of actions.
For example, the word Enter indicates that you type in an entry and
press the RETURN key. If you were to see

Enter the following command: whoami

you would type whoami and press the RETURN key. The system
would then respond by identifying your login name.

Here is a list of common terms and their corresponding actions.

Term
Enter

Press

Type

Click

Action
Type in the entry and press the RETURN key

Press a single letter or key without pressing the
RETURN key

Type in the letter or letters without pressing the
RETURN key

Press and then immediately release the mouse button

- viii -
Revision C

Term

Select

Drag

Choose

Action
Position the pointer on an item and click the mouse
button

Position the pointer on an icon, press and hold down
the mouse button while moving the mouse. Release
the mouse button when you reach the desired
position.

Activate a command title in the menu bar. While
holding down the mouse button, drag the pointer to a
command name in the menu and then release the
mouse button. An example is to drag the File menu
down until the command name Open appears
highlighted and then release the mouse button.

Syntax notation
A/UX commands follow a specific order of entry. A typical A/UX
command has this form:

command [flag-option] [argument] ...

The elements of a command have the following meanings.

Element

command

flag-option

argument

Revision C

Description

Is the command name.

Is one or more optional arguments that modify the
command. Most flag-options have the form

[-opt...]
where opt is a letter representing an option.
Commands can take one or more options.

Is a modification or specification of the command;
usually a filename or symbols representing one or
more filenames.

- ix -

Element

brackets ([])

ellipses (...)

Description

Surround an optional item-that is, an item that you
do not need to include for the command to execute.

Follow an argument that may be repeated any
number of times.

For example, the command to list the contents of a directory (1 s) is
followed below by its possible flag options and the optional argument
names.

Is [-R] [-a] [-d] [-C] [-x] [-m] [-1] [-L]
[-n] [-0] [-g] [-r] [-t] [-u] [-c] [-p] [-F]

[-b] [-q] [-i] [-s] [names]

You can enter

Is -a /users

to list all entries of the directory /users, where

Is
-a
/users

Represents the command name
Indicates that all entries of the directory be listed
N ames which directory is to be listed

Command reference notation
Reference material is organized by section numbers. The standard
A/UX cross-reference notation is

cmd(sect)

where cmd is the name of the command, file, or other facility; sect is
the section number where the entry resides.

D Commands followed by section numbers (1M), (7), or (8) are listed
in AIUX System Administrator's Reference.

D Commands followed by section numbers (1), (1e), (lG), (IN), and
(6) are listed in AIUX Command Reference.

D Commands followed by section numbers (2), (3), (4), and (5) are
listed in AIUX Programmer's Reference.

- x -
Revision C

For example,

cat(1)

refers to the command cat, which is described in Section 1 of A/UX
Command Reference. References can also be called up on the screen.
The man command or the apropos command displays pages from
the reference manuals directly on the screen. For example, enter the
command

man cat

In this example, the manual page for the cat command including its
description, syntax, options, and other pertinent infonnation appears on
the screen. To exit, continue pressing the space bar until you see a
command prompt, or press Q at any time to return immediately to your
command prompt. The manuals often refer to information discussed in
another guide in the suite. The fonnat for this type of cross reference is
"Chapter Title," Name of Guide. For a complete description of NUX
guides, see Road Map to A/UX Documentation. This guide contains
descriptions of each NUX guide, the part numbers, and the ordering
information for all the guides in the NUX documentation suite.

- xi -
Revision C

Introduction

to the A/UX Reference Manuals

1. How to use the reference manuals

A/UX Command Reference, A/UX Programmer's Reference, and A/UX
System Administrator's Reference are reference manuals for all the pro­
grams, utilities, and standard file formats included with your NUX®
system.

The reference manuals constitute a compact encyclopedia of A/UX
information. They are not intended to be tutorials or learning guides.
If you are new to NUX or are unfamiliar with a specific functional
area (such as the shells or the text formatting programs), you should
first read A/UX Essentials and the other NUX user guides. After you
have worked with NUX, the reference manuals help you understand
new features or refresh your memory about command features you
already know.

2. Information contained in the reference manuals

NUX reference manuals are divided into three volumes:

• The two-part A/UX Command Reference contains information
for the general user. It describes commands you type at the
NUX prompt that list your files, compile programs, format text,
change your shell, and so on. It also includes programs used in
scripts and command language procedures. The commands in
this manual generally reside in the directories /bin,
/usr/bin and /usr/ucb.

• The two-part A/UX Programmer's Reference contains informa­
tion for the programmer. It describes utilities for programming,
such as system calls, file formats of subroutines, and miscellane­
ous programming facilities.

• A/UX System Administrator's Reference contains information for
the system administrator. It describes commands you type at the
NUX prompt to control your machine, such as accounting

Introduction 1
Revision C

commands, backing up your system, and charting your system's
activity. These commands generally reside in the directories
jete, /usr/ete,and /usr/lib.

These areas can overlap. For example, if you are the only person using
your machine, then you are both the general user and the system
administrator.

To help direct you to the correct manual, you may refer to A/UX Refer­
ence Summary and Index, which is a separate volume. This manual
summarizes information contained in the other A/UX reference manu­
als. The three parts of this manual are a classification of commands by
function, a listing of command synopses, and an index.

3. How the reference manuals are organ ized
All manual pages are grouped by section. The sections are grouped by
general function and are numbered according to standard conventions
as follows:

1 User commands

1M System maintenance commands

2 System calls

3 Subroutines

4 File formats

5 Miscellaneous facilities

6 Games

7 Drivers and interfaces for devices

8 A!UX Startup shell commands

Manual pages are collated alphabetically by the primary name associ­
ated with each. For the individual sections, a table of contents is pro­
vided to show the sequence of manual pages. A notable exception to
the alphabetical sequence of manual pages is the first entry at the start
of each section. As a representative example, intro.1 appears at
the start of Section 1. These intro. section-number manual pages
are brought to the front of each section because they introduce the

2 AlUX System Administrator's Reference
Revision C

other man pages in the same section, rather than describe a command
or similar provision of NUX.

Each of the reference manuals includes at least one complete section of
man pages. For example, the A/UX Command Reference contains sec­
tions I and 6. However, since Section I (User Commands) is so large,
this manual is divided into two volumes, the first containing Section I
commands that begin with letters A through L, and the second contain­
ing Section 6 commands and Section I commands that begin with
letters M through Z. The sections included in each volume are as fol­
lows.

A/UX Command Reference contains sections I and 6. Note that both of
these sections describe commands and programs available to the gen­
eral user .

• Section I-User Commands
The commands in Section I may also belong to a special
category. Where applicable, these categories are indicated by the
letter designation that follows the section number. For example,
the N in ypcat(IN) indicates networking as described follow­
ing.

IC Communications commands, such as cu and
tip.

I G Graphics commands, such as g r a ph and
tplot.

IN Networking commands, such as those which help
support various networking subsystems, including
the Network File System (NFS), Remote Process
Control (RPC), and Internet subsystem .

• Section 6--User Commands
This section contains all the games, such as cribbage and
worms.

Introduction
Revision C

3

AIUX Programmer's Reference contains sections 2 through 5.

4

• Section 2-System Calls
This section describes the services provided by the NUX system
kernel, including the C language interface. It includes two spe­
cial categories. Where applicable, these categories are indicated
by the letter designation that follows the section number. For
example, the N in connect(2N) indicates networking as
described following.

2N Networking system calls

2P POSIX system calls

• Section 3-Subroutines
This section describes the available subroutines. The binary ver­
sions are in the system libraries in the / lib and /usr / lib
directories. The section includes six special categories. Where
applicable, these categories are indicated by the letter designa­
tion that follows the section number. For example, the N in
mount(3N) indicates networking as described following.

3C C and assembler library routines

3F Fortran library routines

3M Mathematical library routines

3N Networking routines

2P POSIX routines

3S Standard I/O library routines

3X Miscellaneous routines

• Section 4-File Formats
This section describes the structure of some files, but does not
include files that are used by only one command (such as the
assembler's intermediate files). The C language struct
declarations corresponding to these formats are in the
/usr/include and /usr/include/sys directories.
There is one special category in this section. Where applicable,
these categories are indicated by the letter designation that fol­
lows the section number. For example, the N in

AlUX System Administrator's Reference
Revision C

protocols(4N) indicates networking as described following.

4N Networking fonnats

• Section 5-Miscellaneous facilities
This section contains various character sets, macro packages, and
other miscellaneous fonnats. There are two special categories in
this section. Where applicable, these categories are indicated by
the letter designation that follows the section number. For exam­
ple, the P in tcp(lP) indicates a protocol as described follow­
ing. by the letter designation in parenthesis at the top of the
page:

SF Protocol families

SP Protocol descriptions

AIUX System Administrator's Reference contains sections 1M, 7 and 8.

• Section 1M-System Maintenance Commands
This section contains system maintenance programs such as
fsck and mkfs.

• Section 7-Drivers and Interfaces for Devices
This section discusses the drivers and interfaces through which
devices are normally accessed. While access to one or more disk
devices is fairly transparent when you are working with files, the
provision of device files permits you more explicit modes with
which to access particular disks or disk partitions, as well as
other types of devices such as tape drives and modems. For
example, a tape device may be accessed in automatic-rewind
mode through one or more of the device file names in the
/ dev / rmt directory (see tc(7». The FILES sections of these
manual pages identify all the device files supplied with the sys­
tem as well as those that are automatically generated by certain
A/UX configuration utilities. The names of the man pages gen­
erally refer to device names or device driver names, rather than
the names of the device files themselves.

• Section 8-A/UX Startup Shell Commands
This section describes the commands that are available from
within the NUX Startup Shell, including detailed descriptions of

Introduction 5
Revision C

those that contribute to the boot process and those that help with
the maintenance of file systems.

4. How a manual entry is organized

The name for a manual page entry normally appears twice, once in
each upper comer of a page. Like dictionary guide words, these names
appear at the top of every physical page. After each name is the sec­
tion number and, if applicable, a category letter enclosed in
parenthesis, such as (1) or (2N).

Some entries describe several routines or commands. For example,
chown and chgrp share a page with the name chown(1) at the
upper comers. If you turn to the page chgrp(I), you find a reference
to chown(1). (These cross-reference pages are only included in A/UX
Command Reference and A/UX System Administrator's Reference.)

All of the entries have a common format, and may include any of the
following parts:

NAME
is the name or names and a brief description.

SYNOPSIS
describes the syntax for using the command or routine.

DESCRIPTION
discusses what the program does.

FLAG OPTIONS
discusses the flag options.

EXAMPLES
gives an example or examples of usage.

RETURN VALUE
describes the value returned by a function.

ERRORS
describes the possible error conditions.

FILES
lists the filenames that are used by the program.

6 A/UX System Administrator's Reference
Revision C

SEE ALSO
provides pointers to related infonnation.

DIAGNOSTICS
discusses the diagnostic messages that may be produced. Self­
explanatory messages are not listed.

WARNINGS
points out potential pitfalls.

BUGS
gives known bugs and sometimes deficiencies. Occasionally, it
describes the suggested fix.

5. Locating information in the reference manuals

The directory for the reference manuals, A/UX Reference Summary and
Index, can help you locate information through its index and sum­
maries. The tables of contents within each of the reference manuals
can be used also.

5.1 Table of contents

Each reference manual contains an overall table of contents and indivi­
dual section contents. The general table of contents lists the overall
contents of each volume. The more detailed section contents lists the
manual pages contained in each section and a brief description of their
function. For the most part, entries appear in alphabetic order within
each section.

5.2 Commands by function

This summary classifies the NUX user and administration commands
by the general, or most important function they perform. The complete
descriptions of these commands are found in A/UX Command Refer­
ence and A/UX System Administrator's Reference. Each is mentioned
just once in this listing.

The summary gives you a broader view of the commands that are avail­
able and the context in which they are most often used.

Introduction 7
RevisionC

5.3 Command synopses

This section is a compact collection of syntax descriptions for all the
commands in AIUX Command Reference and AIUX System
Administrator's Reference. It may help you find the syntax of com­
mands more quickly when the syntax is all you need.

5.4 Index

The index lists key terms associated with NUX subroutines and com­
mands. These key terms allow you to locate an entry when you don't
know the command or subroutine name.

The key terms were constructed by examining the meaning and usage
of the NUX manual pages. It is designed to be more discriminating
and easier to use than the traditional permuted index, which lists nearly
all words found in the manual page NAME sections.

Most manual pages are indexed under more than one entry; for exam­
ple, lorder(l) is included under "archive files," "sorting," and
"cross-references." This way you are more likely to find the reference
you are looking for on the first try.

5.5 Online documentation

Besides the paper documentation in the reference manuals, NUX pro­
vides several ways to search and read the contents of each reference
from your NUX system.

To see a manual page displayed on your screen, enter the rnan(1)
command followed by the name of the entry you want to see. For
example,

man passwd

To see the description phrase from the NAME section of any manual
page, enter the whatis command followed by the name of the entry
you want to see. For example,

whatis apropos

8 A/UX System Administrator's Reference
Revision C

To see a list of all manual pages whose descriptions contain a given
keyword or string~ enter the apropos command followed by the
word or string. For example~

apropos remove

These online documentation commands are described more fully in the
manual pages man(l)~ whatis(1)~ and apropos(l) in AIUX Com­
mand Reference.

Introduction 9
Revision C

Table of Contents

Section 1 M: System Maintenance Commands

intro(lM) introduction to system maintenance commands
accept(lM) .. allow lp requests
acct(lM) overview of accounting commands
acctcms(1M) command summary from per-process accounting records
acctcom(lM) search and format process accounting files
acctcon(1M) .. connect-time accounting
acctconl(lM) .. see acctcon(lM)
acctcon2(lM) .. see acctcon(lM)
acctdisk(lM) .. see acct(lM)
acctdusg(lM) .. see acct(lM)
acctmerg(lM) merge or add total accounting files
accton(1M) ... see acct(lM)
acctprc(1M) .. process accounting
acctprcl(lM) .. see acctprc(lM)
acctprc2(lM) .. see acctprc(lM)
acctsh(lM) shell procedures for accounting
acctwtmp(lM) .. see acct(lM)
adduser(lM) ... add a user account
apm_getty(lM) .. see getty(lM)
appletalk(lM) configure and view AppleTalk® network interfaces
arp(lM) address resolution display and control
autoconfig(lM) build a new up-to-date kernel
badblk(lM) set or update bad block information
bcheckrc(lM) ... see brc(lM)
bcopy(lM) .. interactive block copy
biod(lM) ... see nf sd(lM)
brc(lM) ... system initialization shell scripts
chargefee(lM) .. see acctsh(1M)
chgnod(lM) change current A/UX system nodename
chroot(lM) change root directory for a command
ckpacct(1M) .. see acctsh(1M)
clri(lM) ... clear inode
comsat(lM) .. server for biff(l)
cpset(lM) install files in specified directories
cron(lM) .. clock daemon
dcopy(lM) copy file systems for optimal access time
devnm(lM) .. device name

Section 1M

dev_kill(lM) remove devices files within a directory
di skf orma t(lM). format a disk through a driver-dependent format operation
diskusg(lM) generate disk accounting data by user ID
dodisk(lM) .. see acct sh(lM)
dp(lM) .. perform disk partitioning
dslipuser(lM) display the current state of slip lines on a slip server
dump. bsd(lM) copy the files within the named file system to a

dump. bsd archive .
errdead(lM) " extract error records from a crash dump
errdemon(lM) ... error-logging daemon
errpt(lM) .. process a report of logged errors
errstop(lM) terminate the error-logging daemon
escher(lM) ... autorecovery administration
etheraddr(lM) .. get an Ethernet address
eu(lM) .. update autorecovery files
eupda te(1M) update important files for autorecovery purposes
exterr(lM) tum on/off the reporting of extended errors
ff(lM) list file names and statistics for a file system
f inc(lM) .. fast incremental backup
fingerd(lM) remote user information server
finstall(lM) installA/UX commercial software from floppy disks
f rec(lM) .. recover files from a backup tape
f sck(lM) check file-system consistency and interactively repair
f sdb(1M) .. debug the file system
fsentry(lM) , create a file-system-table entry
f sirand(1M) install random inode generation numbers
f s sta t(lM) .. report file-system state
ftpd(lM) Internet File Transfer Protocol server
fuser(lM) identify processes using a file or file structure
fwdload(lM) load an application onto an intelligent peripheral
fwd _lkuP(lM) .. look up the application loaded onto an intelligent peripheral
fwtmp(lM) manipulate connect accounting records
getty(lM) set terminal type, modes, speed, and line discipline
grpck(lM) ... see pwck(lM)
ifconfig(lM) configure network interface parameters
inetd(lM) ... Internet services daemon
ini t(lM) ... process control initialization
install(lM) install files in specified directories
kconfig(lM) tune kernel parameters for work-load optimization
keyset(lM) ... set console keyboard mapping
killall(lM) ... kill all active processes
labelit(1M) .. see volcopy(lM)
lastlogin(lM) .. see acctsh(lM)

ii System Maintenance Commands

line _ sane(lM) push streams line disciplines
lockd(lM) ... process network lock daemon
Login(lM) present a Macintosh® login dialog box when called by ini t
lpadmin(lM) configure the lp spooling system
lpc(lM) ... line-printer control program
lpd(lM) .. 4.2 line-printer daemon
lpmove(lM) .. see lpsched(lM)
lpsched(lM) start or stop the LP request scheduler and move requests
lpshut(lM) .. see lpsched(lM)
lptest(lM) generate line-printer ripple pattern
macquery(1M) post a Macintosh® alert box to query the user
macsysinitrc(lM) .. see brc(lM)
mailq(lM) list the contents of the mail queue
makedbm(lM) make a yellow pages dbm file
mkfs(lM) .. construct an SVFS file system
mkfslb(lM) construct a file system with 512-byte blocks
mklost+found(lM) make a lost+found directory for fsck
mknod(lM) ... build device file
mkslipuser(lM) initialize the slip user database
module _ dump(lM) identify configuration information stored within the

named kernel file
monacct(1M) .. see acctsh(lM)
mount(lM) mount and dismount file systems
mountd(lM) .. NFS mount request server
named(lM) .. Internet domain name server
ncheck(lM) locate the filename associated with an i-node
ncstats(1M) display kernel name cache statistics
newaliases(lM) rebuild the database for the mail aliases file
newconfig(lM) prepare and configure a new kernel
newf s(1M) .. construct a new UFS file system
newunix(lM) prepare for new kernel configuration
nf sd(lM) .. NFS daemons
nfsstat(lM) Network File System statistics
nulladm(lM) .. see acctsh(lM)
pac(1M) " gathers printer/plotter accounting information
ping(lM) exercise the network by sending test packets to a named host
pname(1M) associate named partitions with device files
portmap(lM) DARPA port to RPC program number mapper
powerdown(lM) ... power down the system
powerfail(lM) .. see brc(lM)
prctmp(lM) .. see acctsh(lM)
prdaily(lM) .. see acctsh(lM)
prtacct(lM) .. see acct sh(lM)

Section 1M iii

psbanner(lM) ... see transcript(lM)
pscorrun(lM) .. see transcript(lM)
psinterface(lM) see transcript(lM)
psrv(lM) .. see transcript(lM)
pstat(1M) .. print system facts
pstext(lM) .. see transcript(lM)
pwck(lM) .. password/group file checkers
rc(lM) .. see brc(lM)
rdump(1M) .. see dump. bsd(lM)
reboot(lM) .. reboot the operating system
rej ect(lM) ... prevent LP requests
remshd(lM) .. remote shell server
restore(lM) copy files from a dump. bsd archive into an existing file

system
revnetgroup(lM) reverse the netgroup file
rexecd(lM) .. remote execution server
rlogind(lM) .. remote login server
route(lM) manually manipulate the routing tables
routed(lM) .. network routing daemon
rpcinfo(lM) ... report RPC information
rstatd(lM) .. kernel statistics server
runacct(lM) ... run daily accounting
rusersd(lM) .. rusers server
rwall(1M) .. write to all users over a network
rwalld(lM) ... network rwall server
rwhod(lM) ... system status server
sal(lM) ... see sadc(lM)
sa2(lM) ... see sadc(lM)
sadc(lM) .. system activity report package
sccstorcs(lM) build RCS file from SCCS file
sendmail(lM) ... send mail over the Internet
setport(lM) ... set a serial port
set timezone(lM) ... set the local time zone
showmount(lM) ... show all remote mounts
shutacct(lM) .. see acct sh(lM)
shutdown(lM) terminate all processes and bring the system down to

single-user mode
slattach(lM) attach serial lines as network interfaces
slattconf(lM) attach and configure serial lines as network interfaces
slip(1M) attach a dialup serial line as a network interface
spray(lM) ... spray packets
sprayd(lM) .. spray server

iv System Maintenance Commands

StartMonitor(lM) display a progress bar during the NUX® boot
sequence

startmsg(1M) send messages to StartMonitor during the NUX®
boot process

startup(lM) run startup programs at boot time
startup(lM) .. see acctsh(lM)
statd(lM) provide crash and recovery for network locking services
stdhosts(1M) convert Internet addresses to standard form
swap(1M) add or delete disk blocks to or from the swap area
sysinitrc(1M) .. see brc(lM)
talkd(lM) remote user communication server
telini t(lM) ... see init(lM)
telnetd(lM) DARPA TELNET protocol server
tftpd(lM) DARPA Trivial File Transfer Protocol server
tic(lM) ... terminfo compiler
transcript(lM) TRANSCRIPT spooler filters for POSTSCRIPT printers
trpt(lM) ... transliterate protocol trace
tty_add(1M) modify the /etc/inittab file
tty_kill(lM) .. see tty_add(lM)
tunefs(lM) tune an unmounted Berkeley 4.2 file system (UFS)
turnacct(lM) .. see acctsh(lM)
tzdump(lM) ... time zone dumper
tzic(lM) .. time zone compiler
umount(lM) ... see mount(lM)
uucico(lM) transfer files queued by uucp or uux
uuclean(lM) clean up the uucp spool directory
uushell(lM) .. see uucico(lM)
uusub(lM) .. monitor UUCP network
uuxqt(lM) .. UUCP execution file interpreter
vipw(lM) ... edit the password file
volcopy(lM) copy file systems with label checking
wall(1M) ... write to all users
whodo(lM) ... who is doing what
wtmpfix(lM) .. see fwtmp(lM)
ypbind(lM) .. see ypserv(lM)
ypinit(lM) build and install yellow pages database
ypmake(1M) ... rebuild yellow pages database
yppasswdd(lM) server for modifying yellow pages password file
yppoll(lM) what version of a YP map is at a YP server host
yppush(lM) '" force propagation of a changed YP map
ypserv(lM) yellow pages server and binder processes
ypset(1M) point ypbind at a particular server
ypxfr(lM) transfer a YP map from some YP server to here

Section 1M v

intro(lM) intro(lM)

NAME
intro - introduction to system maintenance commands

DESCRIPTION
This section describes, in alphabetical order, commands that are
used clliefly for system maintenance and administration purposes.
The commands in this section should be used along with those
listed in Section 1 of the AIUX Command Reference. Cross refer­
ences in the form name(lM), name(7), or name(8) refer to entries
in this manual. Cross references to entries in sections other than
1M, 7 and 8 refer to entries ,in one of the other NUX reference
manuals (see the Preface).

REPAIRING DISKS
AIUX Local System Administration includes a detailed description
of using fsck to repair file systems. It is always a good idea to
make a complete backup of a corrupt file system that contains
valuable data, just in case the attempted repairs result in unneces­
sary data losses. Choose a backup utility that can copy data from
an unmounted file system onto the backup media.

To recover from a system crash, refer to Local System Administra­
tion.

February, 1990 1
Revision C

accept(IM) accept(IM)

NAME
accept - allow lp requests

SYNOPSIS
/usr/ lib/ accept destinations

DESCRIPTION
accept allows lp(l) to accept requests for the named destina­
tions (also see reject(lM)).

destination can be a printer or a class of printers. To see the status
of destinations, use the lpstat(l) command.

FILES
/usr/lib/accept
/usr/spool/lp/*

SEE ALSO
enable(l), lp(I), lpstat(I), lpadmin(IM), lpsched(lM),
reject(IM).

1 February, 1990
Revision C

acct(IM) acct(IM)

NAME
acctdisk, acctdusg, accton, acctwtmp - overview
of accounting commands

SYNOPSIS
/usr/lib/acct/acctdisk

/usr / lib/ acct/ acctdusg [-p file] [-u file]

/usr / lib/ acct/ accton [file]

/usr / lib/ acct / acctwtmp reason

DESCRIPTION
Overview

Accounting software is a set of tools (both C programs and shell
procedures) that build accounting systems. acctsh(IM)
describes the shell procedures built on top of the C programs.

Connect-time accounting is handled by programs writing records
into / etc/utmp, (described in utmp(4)). acctcon(IM)
describes programs converting / etc/utmp into session and
charging records, which acctmerg(1M) then summarizes.

The A/UX system kernel performs process accounting. When a
process terminates, one record per process is written to a file (nor­
mally /usr / adm/pacct). The programs in acctprc(IM)
summarize this data for charging; a c c t cms (1 M) summarizes
command use. You can examine current process data with
acctcom(I).

acctmerg merges and summarizes process accounting and con­
nect time accounting (or any accounting records in the format
described in acct(4)) into total accounting records (see tacct
format in acct(4)). prtacct (see acctsh(lM)) formats ac­
counting records.

acctdisk
acctdisk reads lines contammg user ID, login name, and
number of disk blocks and converts them to total accounting
records that can be merged with other accounting records.

acctdusg
acctdusg reads its standard input (usually from find
-print) and computes consumption of disk resource (including
indirect blocks) by login.

-p file
use a password file other than /etc/passwd (see

February, 1990
Revision C

1

acct(IM) acct(IM)

diskusg(IM».

-ufile
place records acctdusg doesn't charge anyone for in file.
This is potential way to find users trying to avoid disk
charges.

accton
Typing accton turns process accounting off.

file append process accounting records to this existing file (see
acct(2) and acct(4».

acctwtmp
acctwtmp writes a utmp(4) record containing the time and a
reason to its standard output. The record written will be of type
ACCOUNTING (see utmp(4».

reason
a string of up to 11 characters, numbers, $, or spaces. For
example, the following are suggestions for reboot and shut­
down procedures, respectively:

. acctwtmp 'uname' » /etc/wtmp
acctwtmp "file save" » /etc/wtmp

FILES
/usr/lib/acct/acctdisk
/usr/lib/acct/acctdusg
/usr/lib/acct/accton
/usr/lib/acct/acctwtmp
/etc/passwd used to convert login name

to user ID
/usr/lib/acct

/usr/adm/pacct

/etc/wtmp

holds accounting com­
mands listed in this section
of the manual
current process accounting
file
login/logoff history file

SEE ALSO

2

acctcom(I), acctcms(IM), acctcon(IM), acctmerg(IM),
acctprc(1M), acctsh(IM), diskusg(1M), fwtmp(1M),
runacct(IM), acct(2), acct(4), utmp(4).

February, 1990
RevisionC

acctcms(1M) acctcms (1M)

NAME
acctcms - command summary from per-process accounting
records

SYNOPSIS
/usr/lib/acct/acctcms [-a [-0] [-p]] [-c] [-j] [-n]
[-s] [-t] file .. .

DESCRIPTION
acctcms reads one or more files, normally in the form described
in acct(4). It adds records for processes that executed
identically-named commands, sorts them, and writes them to the
standard output, nonnally using an internal summary fonnat. The
flag options are:

-a Print output in ASCII rather than in the internal summary for­
mat. The output includes command name, number of times
executed, total kcore-minutes, total CPU minutes, total real
minutes, mean size (in K), mean CPU minutes per invoca­
tion, "hog factor," characters transferred, and blocks read
and written, as in acctcom(l). Normally, output is sorted
by total kcore-minutes.

You can use the following options only with the -a flag op­
tion.

-p Output a prime-time-only command summary.

-0 Output a nonprime (offshift) time-only command sum-
mary.

Using -p and -0 together produces a combination prime and
non-prime-time report. The output summaries are total usage, ex­
cept number of times executed, CPU minutes, and real minutes;
these are split into prime and nonprime.

-c Sort by total CPU time, rather than total kcore-minutes.

-j Combine commands invoked only once under "***other".

-n Sort by number of command invocations.

-s File names encountered hereafter are in internal summary
fonnat.

-t Process all records as total accounting records. The default
internal summary format splits each field into prime and
nonprime-time parts. This option combines the prime and

February, 1990 1
Revision C

acctcms (1M) acctcms (1M)

nonprime-time parts into a single field that totals both, and is
compatible with System V style acctcms internal summary
format records.

EXAMPLE
A typical sequence for daily command accounting and maintain­
ing a running total is:

acctcms file ... > today
cp total previous-total
acctcms -s today previous-total > total
acctcms -a -s today

FILES
/usr/lib/acct/acctcms
/usr/lib/acct/holidays

SEE ALSO
acctcom(I), acct(1M), acctcon(IM), acctmerg(1M),
acctprc(1M), acctsh(IM), fwtmp(IM), runacct(1M),
acct(2), acct(4), utmp(4).

BUGS

2

You get unpredictable output if you use -t on new style internal
summary format files, or if you don't use it with old style internal
summary format files.

February, 1990
Revision C

acctcom(1M) acctcom(lM)

NAME
acctcom - search and format process accounting files

SYNOPSIS
acctcom [-a] [-b] [-C sec] [-e time] [-E time] [-f]
[-g group] [-h] [-H factor] [-i] [-I chars] [-k] [-1 line]
[-m] [-n pattern] [-0 ofile] [-0 sec] [-q] [-r] [-s time]
[-S time] [-t] [-u user] [-v] [file] ...

DESCRIPTION
acctcom reads file, the standard input, or /usr/adm/pacct,
in the form described by acct(4) and writes selected records to
the standard output. Each record represents the execution of one
process. The output shows:

COMMAND NAME
USER
TTYNAME
START TIME
END TIME
REAL (SEC)
CPU (SEC)
MEAN SIZE (K)

and optionally,

F STAT
HOG FACTOR
KCORE MIN
CPU FACTOR
CHARS TRNSFD
BLOCKS READ

where

F is the fork/exec flag: 1 for fork without exec. STAT is the
system exit status. and BLOCKS READ is the total blocks read
and written.

The command name has a =It inserted in front of it if it was execut­
ed with superuser privileges. If a process is not associated with a
known terminal, a ? is placed in the TTYNAME field.

If no files are specified, and if the standard input is associated with
a terminal or / dev /nu11 (as is the case when using & in the
shell), /usr / adm/pacct is read; otherwise, the standard input
is read.

February, 1990
Revision C

1

acctcom(lM) acctcom(1M)

2

If any file arguments are given, they are read in their respective
order. Each file is normally read forward, that is, in chronological
order by process completion time. The file /usr/adm/pacct
is usually the current file to be examined; a busy system may need
several such files, of which all but the current file are found in
/usr / adm/pacct? The flag options are:

-a Show some average statistics about the processes
selected. The statistics will be placed after the output
records.

- b Read backwards, showing latest commands first. This
option has no effect when the standard input is read.

-c sec Show only processes with total CPU time, system plus
user, exceeding sec seconds.

-e time Select processes existing at or before time, given in the
format hr[: min[: sec]].

-E time Select processes ending at or before time. Using the
same time for both - sand - E shows the processes
that existed at time.

-f Print the fork/exec flag and system exit status columns
in the output.

-g group Show only processes belonging to group. The group
may be designated by either the group ID or group
name.

- h Instead of mean memory size, show the fraction of to­
tal available CPU time consumed by the process dur­
ing its execution. This hog factor is computed as:

(total-cPU-time)J(elapsed-time).

-Hfactor Show only processes that exceedfactor, where factor
is the hog factor, as explained in option - h, above.

- i Print columns containing the I/O counts in the output.

- I chars Show only processes transferring more characters than

-k

-lline

the cut .. off number given by chars.

Instead of memory size, show total kcore-minutes.

Show only processes belonging to terminal / dev / line.

February, 1990
RevisionC

acctcom(lM) acctcom(lM)

-m Show mean core size (the default).

-npattern
Show only commands matching pattern. pattern may
be a regular expression as in ed(l), except that +
means one or more occurrences.

-oofile Copy selected process records in the input data format
to ofile; suppress writing on standard output.

-0 sec Show only processes with CPU system time exceeding
sec seconds.

-q Do not produce any output records, just produce the
average statistics as with the -a option.

-r Show CPU factor (user-time)/(system-time + user­
time).

- s time Select processes existing at or after time, given in the
format hr[: min[: sec]].

- S time Select processes starting at or after time.

-t Show separate system and user CPU times.

-v Exclude column headings from the output.

-uuser Show only processes belonging to user that may be
specified by: a user ID, a login name that is then con·"
verted to a user ID, a # which designates only those
processes executed with superuser privileges, or ?
which designates only those processes associated with
unknown user ID' s.

acctcom reports only on processes that have terminated; use
ps(l) for active processes.

FILES
/bin/acctcom
/etc/passwd
/usr/adm/pacct?
fete/group

SEE ALSO
ksh(1), ps(l), sh(I), su(l), acct(IM), aectcms(IM),
acctcon(IM), acctmerg(1M), acctprc(IM), acctsh(IM),
fwtmp(IM), runaeet(IM), aect(2), aect(4), utmp(4).

February, 1990 3
Revision C

acctcom(1M) acctcom(1M)

BUGS
If time exceeds the present time, then time is interpreted as occur­
ring on the previous day.

4 February, 1990
RevisionC

acctcon(1M) acctcon(IM)

NAME
acctconl, acctcon2 - connect-time accounting

SYNOPSIS
/usr/1ib/acct/acctconl [-lfile] [-ofile] [-p] [-t]

/usr/1ib/acct/acctcon2

DESCRIPTION
acctconl reads a sequence of login/logoff records from its stan­
dard input (redirected from / etc/wtmp) and converts them to a
sequence of records, one per login session, giving the following
ASCII output: device, user ID, login name, prime connect time
(seconds), nonprime connect time (seconds), session starting time
(numeric), and starting date and time. The flag options are:

-1 file create file showing the following line usage sum­
mary: line name, number of minutes used, percen­
tage of total elapsed time used, number of sessions
charged, number of logins, and number of logoffs.
This file tracks line usage, identifies bad lines, and
finds software and hardware oddities. Hanging-up,
terminating 10gin(I), and terminating the login
shell each generate logoff records, so the number of
logoffs is often three to four times the number of
sessions. See init(lM) and utmp(4).

-0 file

-p

-t

fills file with an overall record for the accounting
period: starting time, ending time, number of re­
boots, and number of date changes.

print input only: line name, login name, and time
(in both numeric and date/time formats).

acctconl maintains a list of lines on which users
are logged in. When it reaches the end of its input,
it emits a session record for each line that still ap­
pears to be active. It normally assumes that its in­
put is a current file, so that it uses the current time
as the ending time for each session still in progress.
The -t flag causes it to use, instead, the last time
found in its input, thus assuring reasonable and re­
peatable numbers for non-current files.

acctcon2 reads a sequence of login session and converts them
into total accounting records (see tacct format in acct(4)).

February, 1990 1
Revision C

acctcon(lM) acctcon(1M)

EXAMPLE
These commands are typically used as shown below. The file
ctmp is created only for acctprc(lM) commands:

acctconl -t -1 1ineuse -0 reboots < wtmp I sort +In +2 > ctmp
acctcon2 < ctmp I acctmerg > ctacct

FILES
/usr/lib/acct/acctcon1
/usr/lib/acct/acctcon2
/etc/wtmp
/usr/lib/acct/holidays

SEE ALSO
acctcom(l), login(l), acct(lM), acctcms(lM),
acctmerg(lM), acctprc(lM), acctsh(lM), fwtmp(lM),
runacct(lM), ini t(lM), acct(2), acct(4), utmp(4).

BUGS

2

Date changes confuse the line usage report. Use wtmpfix (see
fwtmp(lM» to correct this.

February, 1990
Revision C

acctconl (1M)

February, 1990
Revision C

See acctcon(1M)

acctconl (1M)

1

acctcon2(IM)

See acctcon(1M)

1

acctcon2(IM)

February, 1990
Revision C

acctdisk(1M)

February, 1990
Revision C

See acct(1M)

acctdisk{lM)

1

acctdusg(1M)

See acct(1M)

1

acctdusg(1M)

February, 1990
Revision C

acctmerg(1M) acctmerg(lM)

NAME
acctmerg - merge or add total accounting files

SYNOPSIS
/usr/lib/acct/acctmerg [-a] [-i] [-p] [-t] [-u] [-v]
[file . ..]

DESCRIPTION
acctmerg reads its standard input and up to nine additional files,
all in the tacct format (see acct(4)). It merges these inputs by
adding records whose keys (normally user ID and name) are
identical, and expects the inputs to be sorted on those keys. Flag
options are:

-a produce output in ASCII version of tacct

-i input files are in ASCII version of tacct

-p print input with no processing

-t produce a single record that totals all input

-u summarize by user ID, rather than user ID and name

-v produce output in verbose ASCII format, with more pre-
cise notation for floating point numbers

EXAMPLE
The following sequence is useful for repairing any file kept in this
format:

acctmerg -v < filel > file2

edit file2 as desired

acctmerg -i < file2 > filel

FILES
/usr/lib/acct/acctmerg

SEE ALSO
acctcom(1), acct(1M), acctcms(1M), acctcon(1M),
acctprc(1M), acctsh(1M), fwtmp(1M), runacct(1M),
acct(2), acct(4), utmp(4).

February, 1990
Revision C

1

accton(lM)

See acct(1M)

1

accton(lM)

February, 1990
RevisionC

acctprc(IM) acctprc(1M)

NAME
acctprcl, acctprc2 - process accounting

SYNOPSIS
/usr/lib/acct/acctprcl[cunp]

/usr/lib/acct/acctprc2

DESCRIPTION
acctprcl reads input in the form described by acct(4), adds
login names corresponding to user IDs, and then writes (for each
process) an ASCII line giving user ID, login name, prime CPU
time (tics), nonprime CPU time (tics), and mean memory size (in
memory segment units).

The file ctmp contains a list of login sessions, in the form
described in acctcon(1M), sorted by user ID and login name.
This helps it distinguish among different login names that share
the same user ID. If you don't supply this file, acctprcl ob­
tains login names from the password file.

acctprc2 reads records in the form written by acctprcl,
summarizes them by user ID and name, then writes the sorted
summaries to the standard output as total accounting records.

EXAMPLE
These commands are typically used as follows:

acctprcl ctmp < /usr/adm/pacct I acctprc2 > ptacct

FILES
/usr/lib/acct/acctprcl
/usr/lib/acct/acctprc2
/etc/passwd
/usr/lib/acct/holidays

SEE ALSO
acctcom(I), acct(IM), acctcms(1M), acctcon(1M),
acctmerg(IM), acctsh(IM), cron(IM), fwtmp(1M),
runacct(1M), acct(2), acct(4), utmp(4).

BUGS
Although normally run commands distinguish among login names
that share user ID's, some commands (for example, those run
from cron(1M» find it difficult to do this. They can be more
precisely converted by faking login sessions on the console via the
acctwtmp program in acct(1M).

February, 1990
Revision C

1

acctprc(lM) acctprc(lM)

CAVEAT

2

A memory segment of the mean memory size is a unit of measure
for the number of bytes in a logical memory segment on a particu­
lar processor.

February, 1990
Revision C

acctprcl(IM) acctprcl(IM)

See acctprc(lM)

February, 1990 1
Revision C

acctprc2 (1M)

See acctprc(1M)

1

acctprc2(IM)

February, 1990
Revision C

acctsh(lM) acctsh(lM)

NAME
chargefee, ckpacct, dodisk, lastlogin, monacct,
nulladm, prctmp, prdaily, prtacct, shutacct,
startup, turnacct - shell procedures for accounting

SYNOPSIS
/usr / lib/ acct / chargefee login-name number

/usr/lib/acct/ckpacct~~cb]

/usr / lib/ acct / dodisk [-0] ffile ...]

/usr/lib/acct/lastlogin

/usr/lib/acct/monacct number

/usr / lib/ acct/nulladmfile

/usr / lib/ acct /prctmp ffile ...]

/usr/lib/acct/prdaily[-l][-c][mmd~

/usr /lib/ acct/prtacctfile [heading]

/usr/lib/acct/shutacct [reason]

/usr/lib/acct/startup

/usr/lib/acct/turnacct on I off I switch

DESCRIPTION
cbargefee
chargefee charges number units to login-name and writes a
record to / us r / adm/ fee, to merge with other accounting
records during the night.

ckpacct
You should initiate ckpacct with cron(lM). It periodically
checks the size of /usr/adm/pacct. If the size exceeds blocks
(500 by default), it invokes turnacct switch. If the number
of free disk blocks in the /usr file system falls below 500,
ckpacct automatically uses turnacct off to stop collecting
process accounting records. When the number of free blocks
again rises to 500, it reactivates accounting. This feature is sensi­
tive to how often ckpacct is executed, usually by cron.

dodisk
cron should invoke dodisk to perform disk accounting on the
special files in / etc/ checklist.

-0 do a slower version of disk accounting by login directory.

February,1990 1
RevisionC

acctsh{lM) acctsh{lM)

2

file specifies one or more file systems to do disk accounting on.
If you use file, disk accounting will only be done on these file
systems. If you use the -0 flag, file should be mount points
of mounted file systems. If omitted, they should be the spe­
cial file names of mountable file systems.

lastlogin
runacct (1M) invokes 1ast10gin to update
/usr/ adm/ acct/ sum/ loginlog, which shows the last date
each person logged in.

monacct
You should invoke monacct once a month or once an accounting
period.

number
indicates the month or period. If you don't supply a number,
it defaults to the current month (1-12). This default is useful
if cron(IM) executes monacct on the first day of each
month.

Note: Text can be substituted for the number option.

monacct creates summary files in /usr/adm/acct/fiscal
and restarts summary files in /usr / adm/ acct / sum.

nulladm
nu11adm creates file with mode 664 and owner and group adm.
Various accounting shell procedures call this file.

prctmp
prctmp prints the session record file (normally
/usr / adm/ acct /ni tel ctmp) created by acctcon1 (see
acctcon(1M».

prdaily
runacct (1M) invokes prdai1y to format a report of the pre­
vious day's accounting data. The report is in
/usr/adm/acct/sum/rprtmmdd where mmdd is the month
and day of the report. Typing prdai1y prints the current daily
accounting reports.

mmdd
prints the specified days' accounting reports.

-1 prints a report of exceptional usage by login ID for the
specified date. monacct cleans up previous daily reports
and make them inaccessible to prdai1y.

February, 1990
Revision C

acctsh(1M) acctsh(lM)

-c prints a report of exceptional resource usage by command.
You can only use this on the current day's accounting data.

prtacct
prtacct formats and prints any total accounting (tacct) file.

If the heading option is chosen, a heading is printed on the first
line of each output page, after the date and before the page
number. Multiple word headings must be enclosed in double
quotes.

shutacct
Invoke shutacct during a system shutdown (usually in
/ etc/ Shutdown) to tum process accounting off and append a
reason record to /etc/wtmp.

startup
/etc/rc should call startup to tum accounting on when the
system is brought up.

turnacct
turnacct is an interface to accton (see acct(lM)) which
turns process accounting on or off. turnacct switch turns
accounting off, moves the current /usr / adm/pacct to the next
free name in /usr / adm/pacctincr (where incr is a number
starting with 1 and incremented by 1 for each additional pacct
file), then turns accounting back on. ckpacct calls this pro­
cedure, and thus cron can use it to keep pacct to reasonable
size.

FILES
/usr/lib/acct/chargefee
/usr/lib/acct/ckpacct
/usr/lib/acct/dodisk
/usr/lib/acct/lastlogin
/usr/lib/acct/monacct
/usr/lib/acct/nulladm
/usr/lib/acct/prctmp
/usr/lib/acct/prdaily
/usr/lib/acct/prtacct
/usr/lib/acct/shutacct
/usr/lib/acct/startup
/usr/lib/acct/turnacct
/usr/adm/fee
/usr/adm/pacct

February,1990
Revision C

accumulator for fees
current file for per pro­
cess accounting

3

acctsh(IM) acctsh(IM)

/usr/adm/pacct*

/etc/wtmp
/usr/lib/acct/ptelus.awk

/usr/lib/acct/ptecms.awk

/usr/adm/acct/nite
/usr/lib/acct

/usr/adm/acct/sum

used if pacct gets
large and when execut­
ing daily accounting
procedure
login/logoff summary
contains the limits for
exceptional usage by 10-
ginID
contains the limits for
exceptional usage by
command name
working directory
holds all accounting
commands listed in this
section of the manual
summary directory,
should be saved

SEE ALSO

4

acctcom(I), acct(IM), acctcms(IM), acctcon(IM),
acctmerg(1M), acctprc(1M), cron(IM), diskusg(IM),
fwtmp(1M), rc(IM), runacct(IM), shutdown(IM),
acct(2), acct(4), utmp(4).

February, 1990
Revision C

acctwtmp(IM)

February, 1990
RevisionC

See acct(IM)

acctwtmp{lM)

1

adduser(lM) adduser(lM)

NAME
adduser - add a user account

SYNOPSIS
adduser [-r real-name] [-a address] [-x extension]
[-p home-phone] [-g group] [-s shell] [-d dir] [-h home]
[-u lowest] [-u uid] [-i] [-c] [login-name] ...

DESCRIPTION
adduser creates an account for each login-name. One or more
accounts may be added with a single command; command-line op­
tions apply to all names given. For each user, a password file en­
try is generated, and a home directory is created. If no login­
names are provided, adduser enters interactive mode, prompt­
ing for all values that were not specified on the command line.

adduser uses the information given, or appropriate defaults, to
generate an entry suitable for inclusion in / etc/passwd. If ap­
propriate, an entry is also generated for / etc/ group. For each
account created, a brief report is written to the standard output. In
the interactive mode, a confirmation is requested before the final
changes to / etc/passwd are made.

A new home directory is created, if necessary, and startup files
(. cshrc, . kshrc, . login, . logout, and . profile) are
copied in to it from / skel. Directory and file permissions are set
to read, write, and execute for owner, and read and execute for
group (750). The information used to create each account is
stored in a README file in each new home directory.

adduser does not permit new users to be added locally to a sys­
tem that is receiving its password file via the Yellow Pages (YP).
Accounts for users already in the yP password database can be
added locally, but login name, group ID, and password fields are
those given by the yP database, rather than those specified in the
adduser command line.

In interactive mode, adduser prompts for a password for each
new account. In batch mode, the password field is set to , • .,
which causes a password to be set when the account is first used.

FLAG OPTIONS
Command line options allow administrators to override default
values. The following flag options are available:

-r real-name Specify the real name of a person, for example,
"Fred Smith" to be associated with the account.

1 February, 1990
Revision C

adduser(IM)

-a address

-x extension

adduser(1M)

To preserve embedded spaces, such as the space
between the first and last name, place quotation
marks around real-name. Quotes should be used
to protect any blanks in the name.

Specify an office address, for example, mail stop
or building number.

Specify an office telephone number.

-p home-phone Specify a home telephone number.

-g group

-s shell

-ddir

-h home

-u lowest

-u uid

February, 1990
RevisionC

Specify the initial login group in which each user
is to be placed. If omitted, adduser creates a
unique group for each user. The group name
created is of the form gpgid where gid is the
next available numeric group ID.

Specify the full pathname of an executable pro­
gram to use as the shell for each user added. If
omitted, the default is /bin/ csh. Other com­
mon choices are /bin/ksh, and /bin/ sh.

Specify the full pathname of the parent of the
user's home directory. By default, home direc­
tories are created as /users/login-name. This
option causes a directory other than /users to
be used. The name of the home directory is that
of the new account, login-name. This option
may not be used with the - h option.

Specify the full pathname of the desired home
directory. The login-name is not to be con­
sidered, and home is used as the name of the
home directory. This option may not be used
with the -d option.

Specify the desired lower bound for determining
a numeric user ID (UID). If omitted, adduser
uses the first available UID ~ 200. The lowest
UID may only be specified from the command
line; interactive mode does not prompt for this
value. This option may not be used in combina­
tion with - u.
Force the numeric UID to be uid. The UID may
only be forced from the command line; interac­
tive mode does not prompt for this value. This

2

adduser(IM) adduser(IM)

-i

-c

option may not be used with -u.

Force an interactive mode, which is nonnally en­
tered only if login-name is omitted. This option
forces adduser to prompt for a real name, ad­
dress, extension, home phone, group, shell, or
home directory, which was not supplied on the
command line.

Create a USEFUL COMMAND folder in the
home directory of the user.

FILES
/etc/gtmp Temporary group file
/ etc/ptmp Temporary password file
/ etc/ ogroup Old group file
/ etc/ opasswd Old password file
/usr /lib/ skel/* Standard startup files (. cshrc,

.login, . profile, .~.)
$HOME/README Account-information file placed in each new account

SEE ALSO
csh(1), ksh(I), sh(1), vipw(IM).

AIUX Network System Administration.

3 February, 1990
RevisionC

apm_getty(lM)

February, 1990
Revision C

See getty(lM)

1

appletalk(1M) appletalk{lM)

NAME
appletalk - configure and view AppleTalk® network
interfaces

SYNOPSIS
appletalk [-u] [-i interface] [-b hardware interface] [-z]
[-d] [-n] [-3] -

DESCRIPTION
appletalk lets you configure and view AppleTalk network in­
terfaces and the AppleTalk network. You can use appletalk at
any time to view network interface parameters or to bring an Ap­
pleTalk interface up or down. The current version of NUX®
supports only a single interface at a time, as defined in ap­
pletalkrc(4) .

FLAG OPTIONS

1

The following flag options may be used:

-u

- i interface

Bring online the interface specified in ap­
pletalkrc(4». You must be superuser to
use this option. (See WARNINGS.)

Define the AppleTalk interface to configure or
view. This parameter is a string, such as 10-
caltalkO or ethertalkO. The default is
the interface defined in appletalkrc(4).

- b hardware_interface

-z

Use the hardware interface. This is the
hardware interface to be associated with an
EtherTalk interface; it is a string such as aeO.
In order for this option to work, you must use it
along with the -u option. This option is useful
when the node has multiple Ethernet boards in­
stalled. It associates the EtherTalk interface
with the specified hardware interface. The de­
fault interface is the hardware interface defined
in appletalkrc(4).

Ignore the zone name hint saved from the pre­
vious incarnation of appletalk and assume
that there is no zone name available for the
node at startup. As a result, if there are multi­
ple zones on the cable, the system displays a
menu of valid zone names for the cable. The

February, 1990
Revision C

appletalk(1M)

-d

-n

-s

EXAMPLES

appletalk(1M)

system puts the node into the zone that you
select. This option is valid only when you use
the -u option to bring an EtherTalk interface
online.

Take offline the AppleTalk interface. The de­
fault interface is specified in ap­
pletalkrc(4). You must be superuser to use
this option. (See WARNINGS.)

Display the AppleTalk current node address.

If the AppleTalk interface is active, display
LAP and DDP statistics and error counts.

To bring the interface localtalkO online, enter

appletalk -i localtalkO -u

To display statistics and error counts, enter

appletalk -s

To bring online interface ethertalkO on the hardware interface
ael, enter

appletalk -i ethertalkO -b ael -u

FILES
/etc/appletalk
/etc/appletalkrc
/dev/appletalk/ddp/socket
/dev/appletalk/lap/*/control

WARNINGS
If you bring the appletalk interface up or down while within
term, appletalk won't work for the rest of that term session.
Get out of term and launch it again in order to use appletalk
functions in term again.

SEE ALSO
appletalkrc(4),
"Installing and Administering AppleTalk," in AIUX Network Sys­
tem Administration.

February, 1990 2
Revision C

arp(IM) arp(1M)

NAME
a rp - address resolution display and control

SYNOPSIS
/ etc/ arp hostname
/etc/arp -a [unix] [kmem]
/etc/arp -d hostname
/ etc/ arp -5 hostname ether-addr [temp] [pub]
/etc/arp -ffilename

DESCRIYfION
The arp program displays and modifies the Internet-to-Ethernet
address translation tables used by the address resolution protocol
(see arp(5».

FLAG OYfIONS
With no flag options specified, the program displays the current
ARP entry for hostname. The host may be specified by name or by
number, using Internet dot notation.

- a Display all of the current ARP entries by reading the table
from the file kmem (default / dev /kmem) based on the ker­
nel file unix (default /unix).

-d Delete an entry for the host called hostname. Only the su­
peruser can use this option.

- 5 Create an ARP entry for the host called hostname with the
Ethernet address ether-addr. The Ethernet address is given
as six hex bytes separated by colons. The entry will be per­
manent unless the word temp is given in the command. If
the word pub is given, the entry will be "published"; that is,
this system will act as an ARP server, responding to requests
for hostname even though the host address is not its own.

- f Cause the file filename to be read and multiple entries to be
set in the ARP tables. Entries in the file should be of the
form

hostname ether-addr [temp] [pub]

FILES

1

/etc/arp
/dev/kmem

February, 1990
Revision C

arp(1M)

SEE ALSO
inet(3N), arp(5), ifconfig(lM).

February, 1990
Revision C

arp(lM)

2

autoconfig(lM) autoconfig(lM)

NAME
autoconfig - build a new up-to-date kernel

SYNOPSIS
/etc/autoconfig [-v] [-v] [-r] [-a] [-k] [-D] [-i file]
[-0 file] [-m directory] [-b directory] [-1 linker] [-S file]
[-s directory] [-d directory] [-L loadfile] [-M file]
[-t timeout]

DESCRIPTION
autoconfig is a utility that is run to add software to the operat­
ing system when new devices are added.

FLAG OPTIONS

1

You can use any of the following flag options:

-v Print the current version number of / etc/ autoconfig.

-v Provide verbose output and give a step-by-step account of the
autoconfiguration process.

- r Call device-specific initialization routines for all modules in­
cluded in the new kernel.

-a Check to see if the running kernel matches the current
hardware configuration. If the kernel matches, autocon­
fig exits and does not build a new kernel. If the kernel re­
quires reconfiguration, autoconfig builds a kernel and
calls driver-specific initialization routines (- r). By default,
autoconfig builds the new kernel in the file /unix.
After building a new kernel, autoconfig reboots the ker­
nel.

-k Patch the current running kernel (currently not implemented).

- D Display information about modules configured in the kernel
-input file.

-i file
Change the default input file. The default is
/etc/config.d/newunix.

-0 file
Change the default output file. The default is / unix.

-m directory
Change the default directory used to search for master files.
The default is / etc/master. d.

February, 1990
Revision C

autoconfig(1M) autoconfig(lM)

-b directory
Change the default directory used to search for driver object
files. The default is / etc/boot. d.

-1 linker
Change the default linker program, which is 1d(1). This op­
tion is used for cross development.

-s file
Put a list of startup programs into the file file from the direc­
tory specified by - s. This file is usually specified as
/ etc/ start up.

- s directory
Change the default directory used to search for startup pro­
grams. The default is / etc/ startup. d.

-d directory
Change the default directory used to search for initialization
programs. The default is /etc/init.d.

-L loadfile
Cause autoconfig not to search the slots for devices and
instead to read records from the ASCII file loadfile. Each
record has three fields in the following order: a slot number,
a board ID (a number), and a version number.
Autoconfiguration continues as if these devices are in the sys­
tem.

-M file
Creates an /etc/master file for the use of errpt(lM).

-t timeout
Cause autoconfig to call / etc/macquery to present a
Macintosh® alert box just before rebooting the system. If
timeout is greater than 0, the alert is automatically confirmed
(OK is selected) after timeout seconds. Otherwise, the user
must select the OK button in the alert box to continue with
the reboot -to is specified in / etc/ sysini trc for the
boot process.

February, 1990 2
Revision C

autoconfig(1M)

FILES
/etc/autoconfig
/etc/%autoconfig
/etc/config.d/newunix
/dev/kmem
/unix

SEE ALSO

autoconfig(1M)

ld(1), errpt(1M), module dump(1M), newconfig(1M),
newunix(1M). -

Building AIUX Device Drivers.

3 February, 1990
Revision C

badblk(IM) badblk(IM)

NAME
badblk - set or update bad block information

SYNOPSIS
badblk [-r] /dev/rdsk/c?d?s? [blkno ...]

DESCRIPTION
badblk sets or updates bad block infonnation for disk partitions.
badblk first attempts to alter a bad block by hardware sparing.
In the event that hardware sparing fails and the device supports al­
ternate bad blocking, badblk will attempt to alternate block the
bad block. Hardware sparing may fail if the device does not sup­
port hardware sparing or if the device's capacity for hardware
sparing has been exceeded.

If you invoke badblk without specifying block numbers, it will
search the whole device for bad blocks and print the block
numbers of any that are found.

FLAG OPTIONS
-r When this option is specified, badblk will not attempt to

block any bad blocks, but instead will report those that are
found.

blkno
One or more block numbers separated by blanks.

EXAMPLES
badOlk /dev/rdsk/cOdOs31

does a full read-verify on the whole disk associated with controller
zero, drive zero. Note that the raw device must be specified.

badblk /dev/rdsk/cOdOsO

does a full read-verify on partition zero (usually the root partition)
of the disk associated with controller zero, drive zero.

NOTES
badblk uses very simple tests to determine whether or not a
block is bad.

The alternate block map information can be accessed and
modified through the dp(IM) utility.

The badblk command does not work on floppy disks.

February, 1990
Revision C

1

badblk(lM)

FILES
/usr/bin/badblk

SEE ALSO
dp(1M), altblk(4).

2

badblk(lM)

February, 1990
Revision C

bcheckrc(lM)

February. 1990
Revision C

See brc(lM)

bcheckrc(lM)

1

bcopy(lM) bcopy(lM)

NAME
bcopy - interactive block copy

SYNOPSIS
/etc/bcopy

DESCRIPTION
bcopy dates from a time when neither the UNIX file system nor
disk drives were as reliable as they are now. bcopy copies from
and to files starting at arbitrary block (512-byte) boundaries.

bcopy asks the following questions:

to:
offset:
from:
offset:
count:

the file or device to copy to
the starting "to" block number
the file or device to copy from
the starting "from" block number
the number of blocks to copy

After count is exhausted, it repeats the from question (giving
you a chance to concatenate blocks at the to+offset+count
location). If you press RETURN in response to f rom, everything
starts over.

Press RETURN twice consecutively to terminate bcopy.

FILES
letc/bcopy

SEE ALSO
cpio(I), dd(I).

February, 1990
Revision C

biod(1M)

February, 1990
Revision C

biod(1M)

See nfsd(lM)

1

bre(lM) bre(lM)

NAME
bre, beheekre, maesysinitre, re, sysinitre,
powerfail - system initialization shell scripts

SYNOPSIS
/etc/brc

/etc/bcheckrc

/etc/macsysinitrc

/etc/powerfail

/etc/rc

/etc/sysinitrc

DESCRIPTION

1

init executes sysinitrc, macsysinitrc, brc,
bcheckrc, and rc via entries in /etc/inittab. sysin­
it rc is executed before ini t starts up its initial level. The oth­
er scripts are executed when the system is changed out of single
user mode. powerfail executes whenever a system power
failure is detected.

brc loads any programmable microprocessors with their ap­
propriate scripts.

bcheckrc performs consistency checks to prepare the system
for multiuser mode. It prompts you to check the file systems with
fsck(lM).

rc starts system daemons before the terminal lines are enabled for
multiuser mode. In addition, it mounts file systems and activates
accounting, error logging, system activity logging, and the Remote
Job Entry (RJE) system.

sysini trc performs various system initialization tasks, includ­
ing setting the internal clock, checking the root file system, setting
host and domain names, and running autoconfiguration.

macsysinitrc launches StartMonitor and Comrnand­
Shell to provide a front end for the A/UX® boot process on the
Macintosh® computer while the system initialization scripts are
executed. Before doing so, macsysinitrc executes
/etc/keyset, which needs to be executed before the Macin­
tosh environment is active.

February, 1990
RevisionC

brc(lM) brc(lM)

powerfail is invoked when the system detects a power failure.
It performs any last-minute activities as desired before powering
down.

FILES
/etc/brc
/etc/bcheckrc
/etc/rc
/etc/sethost
/etc/setmactime
/etc/sysinitrc
/etc/powerfail

SEE ALSO
autoconfig(1M), fsck(lM), ini t(lM), query(1M),
shutdown(lM), start up(1M), ini t tab(4), mtab(4).

February, 1990
Revision C

2

chargefee(lM)

See acct sh(1M)

cha rge fee (1M)

February, 1990
Revision C

chgnod(lM) chgnod(lM)

NAME
chgnod - change current A/UX system nodename

SYNOPSIS
chgnod new-name [kernel-file]

DESCRIPTION
chgnod accesses the structure
/usr/include/sys/utsname.h:

struct utsnarne {

} i

char sysname[9]i
char nodename[9];
char release[9]i
char version[9];

defined in

chgnod changes the nodename of the currently running kernel to
new-name. kernel-file is the name of the kernel that was last boot­
ed. If you don't specify a kernel-file, /unix is assumed. 00-

dename is a null-terminated string containing the name the system
is known by on a communications network.

new-name must not be longer than eight characters; longer names
are truncated to eight.

chgnod only changes the nodename of the kernel in memory.
The next time you reboot your system, your nodename will not
reflect this change. If you want to permanently change your no­
dename, you must edit the configuration file name. c and remake
your kernel.

EXAMPLE
chgnod userlO /unix.current

changes your nodename to userl 0 if /unix. current was the
last kernel booted.

FILES
/etc/chgnod
/usr/include/sys/utsname.h

SEE ALSO
hostname(l), uucp(lC), uname(2).

February, 1990
Revision C

1

chroot(IM) chroot(IM)

NAME
chroot - change root directory for a command

SYNOPSIS
! etc! chroot newroot command

DESCRIPTION
Execute command relative to the new root. Change initial slashes
C/) in path names to newroot for a command and any of its chil­
dren. Also, change the initial working directory to newroot.

chroot newroot command > x

creates the file x relative to the original root, not the new one.

Only the superuser can use this command.

The new root path name is always relative to the current root:
even if a chroot is currently in effect, the newroot argument is
relative to the current root of the running process.

EXAMPLE
If you have a floppy-based NUX system disk in
I dev Ids k I c 8 d [0 1] s [07] then:

mkdir It
mount Idev/dsk/c8d[Ol]s[07]/t
chroot It Ibin/sh

leaves you running programs off of the floppy. To return to your
original shell, exit your shell.

FILES
letc/chroot

SEE ALSO
chdir(2).

BUGS
Be very careful when referencing special files in the new root file
system.

1 February, 1990
RevisionC

ckpacct(lM) ckpacct (1M)

See acctsh(1M)

February, 1990 1
RevisionC

clri(lM) clri(lM)

NAME
clri -clear inode

SYNOPSIS
/ etc/ clri [-Tfile-system-type] file-system i-number ...

DESCRIPTION
clri zeros (clears) the inode numbered i-number and increments
the inode generation count. The file-system must be a special file
name referring to a device containing a file system. After clri is
executed, any blocks in the affected file show up as "missing" in
an fsck(lM) of the file-system. This command should only be
used in emergencies, and extreme care should be exercised.

The -T flag option indicates the file-system type, such as 4.2 or
5.2. If this option is not used, clri attempts to determine the
file-system type.

Read and write permission is required on the specified file-system
device. The inode becomes allocatable.

The primary purpose of this command is to remove a file that for
some reason appears in no directory. If it is used to "zap" an
inode that does appear in a directory, care should be taken to track
down the entry and remove it. Otherwise, when the inode is real­
located to some new file, the old entry will still point to that file.
At that point, removing the old entry will destroy the new file.
The new entry will again point to an unallocated inode, so the
whole cycle is likely to be repeated again and again.

EXAMPLE
clri /dev/rdsk/cOdOsO 65

where / dev / rdsk/ cOdO s 0 is a legitimate file system and 65
is the inode number to be cleared.

WARNING
This command should be used with caution.

FILES
/etc/clri

SEE ALSO
fsck(IM), fsdb(IM), ncheck(IM), fstyp(3), fs(4).

BUGS
If the file is open, clri is likely to be ineffective.

1 February, 1990
RevisionC

comsat(IM)

NAME
comsat - server for biff(1)

SYNOPSIS
/usr/etc/in.comsat

DESCRIPTION

comsat(IM)

comsat is the server process which receives reports of incoming
mail and notifies users if they have requested this service.

comsat receives messages on a datagram port associated with
the biff(1) service specification (see services(4N)) for one
line messages of the form

user@mailbox-offset

If the user specified is logged in to the system and the associated
terminal has the owner execute bit turned on (by a biff y), the
offset is used as a seek offset into the appropriate mailbox file and
the first 7 lines or 560 characters of the message are printed on the
user's terminal. Lines which appear to be part of the message
header other than the From, To, Date, or Subject lines are not
included in the displayed message.

FILES
/usr/etc/in.comsat
/etc/utmp

SEE ALSO
biff(I), services(4N).

BUGS
The message header filtering is prone to error. The density of the
information presented is near the theoretical minimum.

Users should be notified of mail that arrives on machines other
than the one to which they are currently logged in.

The notification should appear in a separate window so it does not
interfere with the screen.

February, 1990 1
Revision C

cpset(IM) cpset(IM)

NAME
cpset - install files in specified directories

SYNOPSIS
cpset [-0] object directory [mode [owner [group]]]

DESCRIPTION
cpset installs the object file object in directory. You can specify
mode, owner, and group of the destination file on the command
line. If you omit these data, there are two possible results:

If you are using cpset with administrative permissions
(that is, your user ID is less than 1(0), it provides the fol­
lowing defaults:

mode
0755

owner
bin

group
bin

If you are not an administrator, the destination file has your
default mode, owner, and group.

FLAG OPTIONS
The following flag option is interpreted by cpset:

-0 Move file to OLDfile in the destination directory before instal­
ling the new object.

EXAMPLES

1

cpset echo /bin 0755 bin bin
cpset echo /bin
cpset echo /bin/echo

The above examples have the same effect (assuming they are used
by an administrator). They copy the file echo into /bin and
give 0755, bin, bin as the mode, owner, and group, respective­
ly.

cpset uses the file /usr/src/destinations to determine
the final destination of a file. This file contains pairs of pathnames
separated by spaces or tabs. The first name is the "official" desti­
nation, such as /bin/ echo. The second name is the new desti­
nation. For example, if you move echo from /bin to
/usr/bin, the entry in /usr/src/destinations would

February, 1990
Revision C

cpset(IM) cpset(IM)

be:
/bin/echo /usr/bin/echo

When the actual installation happens, cpset verifies that the
"old" pathname does not exist. If a file is there, cpset issues a
warning and continues. /usr / src/ destinations is not dis­
tributed with the system; sites use it to track local command
movement. The procedures for building the source define the
"official" locations of the source.

NOTES
The environment variable ROOT locates the destination file (in the
form $ROOT/usr/src/destinations). This is necessary
when cross generation is being done on a production system.

FILES
/usr/bin/cpset

SEE ALSO
make(I), install(IM).

February, 1990
RevisionC

2

cron(lM) cron(lM)

NAME
c ron - clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION
cron executes commands at specified dates and times. You can
schedule commands regularly with instructions in crontab files;
other users can submit their own crontab file with command
crontab(l). Use at(l) for commands which execute only once.
Since c ron never exits, you should should only execute it once.
cron is listed in the /etc/inittab file and is therefore started
directly by ini t(lM).

cron examines crontab files and at command files only during
process initialization and when a file is updated using crontab.
This reduces the overhead of checking for new or changed files at
regularly scheduled intervals.

FILES
/etc/cron
/usr/lib/cron
/usr/lib/cron/log
/usr/spool/cron
/usr/lib/cron/queuedefs

SEE ALSO

main cron directory
accounting information
spool area
scheduling information

at(l), crontab(l), sh(l), ini t(lM).

DIAGNOSTICS
A history of cron actions
/usr/lib/cron/log.

1

is recorded in

February, 1990
RevisionC

dcopy(1M) dcopy(1M)

NAME
dcopy - copy file systems for optimal access time

SYNOPSIS
/ etc/ dcopy [-sX] [-an] [-d] [-v] [-fJsize [: isize]] inputfs
outputfs

DESCRIPTION
dcopy copies file system inputfs to outputfs. inputfs is the exist­
ing file system; outputfs is a file system, appropriately sized to
hold the reorganized result. For best results, inputfs should be a
raw device and outputfs should be a block device. dcopy should
be run on unmounted file systems (in the case of the root file sys­
tem, copy to a new pack). With no arguments, dcopy copies files
from inputfs, compressing directories by removing vacant entries,
and spacing consecutive blocks in a file by the optimal rotational
gap. The possible options are

-sX Supplies device information for creating an optimal organi­
zation of blocks in a file. The forms of X are the same as
the -s flag option of fsck(1M).

-an Places the files not accessed in n days behind the free
blocks of the destination file system. If -an is not specified,
the value defaults to 7, that is, no movement occurs.

-d Leaves order of directory entries as is (default is to move
subdirectories to the beginning of directories).

-v Reports how many files were processed, and how big the
source and destination free lists are.

-fJsize[: isize]
Specifies the outputfs file system and inode list sizes (in
blocks). If the option (or : isize) is not given, the values
from the inputfs are used.

dcopy catches interrupt and quit signals and reports on its pro­
gress. To terminate dcopy, send a quit signal and dcopy will no
longer catch interrupts or quits.

FILES
/etc/dcopy

SEE ALSO
fsck(1M), mkfs(1M), ps(1).

February, 1990
Revision C

1

devnm(lM) devnm(lM)

NAME
devnm - device name

SYNOPSIS
/etc/devnm [mount-point]

DESCRIPTION
devnm displays the device file that is currently being referenced
by mount-point, which must be a full pathname. When mount­
point is / and swapping is being done on the same disk section as
the root file system, devnm displays both the block device file
and the swap device file.

/ etc/ rc (see brc(lM» uses this command to construct a
mount-table entry for the root device.

EXAMPLE
If / dev / dsk/ cOdOs2 is mounted on /usr, then entering

/etc/devnm /usr

produces

/dev/dsk/cOdOs2 /usr

FILES
/etc/devnm
/dev/dsk/*
/etc/mtab

SEE ALSO
brc(1M), gd(7).

1 February, 1990
RevisionC

dev _kill (1M)

NAME
dev _kill - remove devices files within a directory

SYNOPSIS
dev _kill number directory [directory ...]

DESCRIPTION
dev kill removes all device files from the specified directories
that have the major number specified by number. It is intended to
be invoked from device initialization programs run by the
autoconfiguration system (see autoconfig(lM) and Building
AIUX Device Drivers)

dev kill silently ignores specified files that are not directories.
This allows one to simply use:

dev_kill 4 /dev /dev/*

without getting thousands of errors. A certain number of devices
required by the system (e.g. / dev / console, etc.) have fixed
(small) major numbers and should not be arbitrarily removed,
especially as part of an autoconfiguration.

FILES
/etc/dev kill
/dev/console
/dev/ ...

SEE ALSO
aut oconf ig(1M).
Building AIUX Device Drivers.

February, 1990
RevisionC

1

diskformat(lM) diskformat(IM)

NAME
diskformat format a disk through a driver-dependent
format operation

SYNOPSIS
diskformat [-dens n] [-head O]floppy-device
diskformat [-cyl s [- [e]]] [-size 532] hard-disk­
device

DESCRIPTION

1

diskformat initializes a hard or floppy disk by passing any
specified parameters through the corresponding generic device in­
terface, such as fd(7) or gd(7). This means that the parameters
for diskformat can be interpreted differently for different
classes of devices. For example, one form of this command can
be used to format hard disks, and in that case the head option is
ignored. However, the head argument is honored whenever it is
passed through the fd (floppy) interface.

For an Apple® Hard Disk SC, the preferred method is to use Ap­
ple HD SC Setup to format and partition disks. That way, Apple
HD SC Setup, as well as other Macintosh® utilities, are able to
read the partition map and discover the whereabouts of any Ma­
cintosh file systems.

Before diskformat actually formats a disk, it issues the follow­
ing message

About to format device. Type return to continue:

and waits for you to confirm the operation. This gives you a final
opportunity to cancel the format operation, because it overwrites
any previous data and programs on the media referenced as
floppy-device or hard-disk-device. Note that any response at all,
other than the interrupt or suspend character, causes diskfor­
ma t to continue its operation.

You must specify a raw floppy-device or hard-disk-device for this
command, as described in fd(7) and gd(7).

Without any options, the floppy disk is formatted at the highest
recording density supported by the media and the drive, as long as
floppy-device references one of the following autodensity device
files:

/dev/rfloppy[Ol]
/dev /rfd/d [01]

February, 1990
Revision C

diskformat(IM) diskformat(lM)

However, if the diskformat command is specified without any
options and the floppy media is referenced through a device file of
fixed density, the media is formatted at the expected density, if at
all possible. See f d(7) for a list of the device files with fixed den­
sities.

FLAG OPTIONS
The following flag options may be used:

-eyl s [- [e]] Format cylinders starting from s and ending with
e. A specification such as s- means starting
from s and proceeding to the end of the media.
Note that while start and end cylinders can be
specified for any device, they are only honored if
the device driver supports them. See Section 7
for details about particular device drivers, such
as fd(7).

-dens n Indicates formatting density for floppy disks
only. A value of 400 specifies 400K single­
sided, 720 specifies 720K, 8 0 0 specifies 800K
double-sided, and 1440 specifies 1440K.

-head 0 Format a floppy disk for single-sided use
(400K). This option is available as well as the
400 argument for -dens so that drives refer­
enced as fixed density can be forced to honor the
command without reporting errors.

-size 532 Format the hard disk at 532 bytes per physical
disk block for compatibility with some early
Macintosh hard disk drives. Logical blocks
remain 512 bytes per block. A/UX® simply ig­
nores the extra tag bytes at the beginning of each
physcial block.

FILES
/bin/diskformat

SEE ALSO
fd(7), gd(7).

NOTES
Before floppy disks can be used with commands such as tar or
epio, they must be formatted using diskformat or the
Macintosh Operating System.

February, 1990 2
Revision C

diskformat(1M) diskformat(lM)

3

Writing to a floppy disk previously fonnatted under the
Macintosh Operating System, using utilities such as tar and
epio, destroys any previously recorded Macintosh data and pro­
grams.

Before a diskformat operation is started, the device is ac­
cessed in exclusive-use mode. This prevents anyone from format­
ting the media in a drive already being used, or prevents anyone
from using the device while it is formatting media.

The default formatting density chosen in the absence of the dens
and head options is determined by the floppy device driver based
on the floppy-device device file specified, the type of floppy drive,
and the media inserted. See f d(7) for details.

February, 1990
RevisionC

diskusg(IM) diskusg(IM)

NAME
diskusg - generate disk accounting data by user ID

SYNOPSIS
diskusg [-i ignlist] [-p pw-file] [-s] [-u outfile] [-v]
[file . ..]

DESCRIPTION
. diskusg generates intermediate disk accounting information
from data in file. diskusg outputs lines on the standard output
(one line per user) in the following format:

uid login #blocks

where

uid

login

#blocks

the user's numeric user ID.

the user's login name; and

the total number of disk blocks allocated to
this user.

diskusg normally reads only the inodes of file systems for disk
accounting. In this case, file is the special filename of these dev­
ices.

diskusg recognizes the following options:

-i ignlist Ignore the data on those file systems whose file sys­
tem name is in ignlist. ignlist lists file system
names separated by commas or enclosed within
quotes. diskusg compares each name in this list
with the file system name stored in the volume ID
(see labeli t(lM».

-p pW-file Use file as the name of the password file to gen­
erate login names. / etc/passwd is used by de­
fault.

-s The input is already in diskusg output format.
diskusg combines all lines for a single user into
a single line. Input is supplied in a file or standard
input if no file is specified.

-u outfile Write records to outfile for files that are charged to
no one. Records consist of the special file name,
the inode number, and the user ID.

February, 1990 1
RevisionC

diskusg(1M} diskusg(lM}

-v Verbose. Print a list on standard error of all files
that are charged to no one.

The output of diskusg is normally the input to acctdisk (see
acct(1M)}, which generates total accounting records that can be
merged with other accounting records. diskusg is normally run
in dodisk (see acctsh(1M)}.

EXAMPLES
The following generates daily disk accounting information:

for i in /dev/dsk/cOdOsO /dev/dsk/c1dOsO; do
diskusg $i > dtmp. 'basename $i' &

done
wait
diskusg -s dtmp.* I sort +On +1 I acctdisk> disktacct

FILES
/usr/lib/acct/diskusg
/dev/dsk/cOdOsO
/dev/dsk/cldOsO
/ etc/passwd converts user ID to login name

SEE ALSO
acct(lM), acctsh(1M), acct(4).

2 February, 1990
Revision C

dodisk(lM)

February, 1990
Revision C

See acctsh(lM)

dodisk(1M)

1

dp(IM) dp(IM)

NAME
dp - perfonn disk partitioning

SYNOPSIS
dp [-q] [-u] file

DESCRIPTION

1

dp is used to perfonn disk partitioning and "Block Zero Block"
manipulation on file. In most cases, though not required, file is a
special file. dp accepts commands from standard input and per­
fonns the specified operations. dp could be considered a special
purpose editor.

All input between the character 41: and a newline (inclusive),
defines a comment and is ignored. This allows for commands to
be easily kept in a disk file and piped to dp whenever a disk needs
to be reinitialized. Commands do not have to be separated by
newlines (that is, more than one command can be entered at an in­
put prompt). White space is nonnally stripped, but may be es­
caped by a backslash (\). This is useful when including white
space in string input. A leading zero (0) in numeric input indi­
cates octal conversion and a leading Ox or Ox indicates hexade­
cimal conversion; otherwise, decimal conversion is used.

dp has some safeguards built in to help avoid destruction or dele­
tion of data. On occasions when dp detects such a request, it will
prompt you for confinnation before the action is performed. By
specifying some commands in uppercase, the safeguards can be
circumvented. Commands that fall into this category are so noted
by the word (force) in their description.

dp has the following operation "modes."

command
DPME-field
BZB-field
timestamp-field
ABM-field

A field mode is entered when a request is made to add or modify
one of the fields. Each field mode accepts its own commands. A
menu containing the list of commands valid for the current mode
can be printed using the ? command. A mode is exited using the
qcommand.

February, 1990
RevisionC

dp(lM) dp(lM)

dp will accept commands to manipulate and change partitions, to
display and save changes, to manipulate the fields of a DPME
(Disk Partition Map Entry) structure, to manipulate the fields of a
BZB (Block Zero Block) structure, to manipulate the timestamp
fields of a BZB structure, and to manipulate the fields of an ABM
(Alternate Block Map) structure. For more information about
these structures see altblk(4), bzb(4), and dpme(4).

In command mode, dp accepts the following commands.

a add partition
A add partition (force)
c change partition
d delete partition
f change name of output file
i initialize disk
I initialize disk (force)
p print a partition
P print allocated partitions
q quitdp
Q quit dp (force)
s print partition map status
U uninitialize the map
v print dp version information
w write changes
? print current menu * start of comment

In DPME-field mode, dp accepts the fQllowing commands.

a change ABM (bzb abm)
b change/initialize BZ B
n name(dpme dpident.dpiname)
t type (dpme dpident. dpitype)
[physical start (dpme yblock _start)
] physical length (dpmeyblocks)
(logical start (dpme lblock start)
) logical length (dpme lbloc"ks)
> writable (dpme writable)
< readable (dpme-='readable)
p print current DPME
q quit DPME changes
? print current menu * start of comment

February, 1990
Revision C

2

dp(IM) dp(IM)

3

In BZB-field mode, dp accepts the following commands.

c no inode level badblk handling (bzb crit)
i bad block inode number (bzb inode)
m timestamps (bzb_tmade, bzb_tmount,

bzb tumount)
n cluster number (bzb_cluster)
p print current bzb
q quit bzb changes
r rootFS (bzb root)
t FS type (bzb-type)
T FS type (force) (b zb _type)
u usrFS (bzb usr)
U uninitialize bzb
? print current menu
=11= start of comment

In timestamp-field mode, dp accepts the following corn­
mands.

p print timestamps
c change creation time (bzb_tmade)
m change mount time (bzb_tmount)
u change umount time (bzb_tumount)
q quit timestamp changes
? print current menu
=11= start of comment

In ABM-field mode, dp accepts the following commands.

b size of map in blocks (abm_size)
c consistency check
e number of used entries (discouraged) (abm _en t s)
I initialize al tblk map per abm contents
i default initialization of abm/ al tblk map
o physical block of start of al tblk map (abm _start)
p print current abm
q quit abm changes
s size of map in bytes (discouraged) (abm _ size)
? print current menu
=11= start of comment

Similar to most ordinary editors, dp will encourage you to save
any changes that might have been made before quitting.

February, 1990
Revision C

dp(lM) dp(lM)

LIMITS
dp will not allow the creation of a disk partition map containing
more than 1024 entries.

FLAG OPTIONS
The following flag options are interpreted by dp:

-q When this option is specified, dp will not prompt for input.

-u This option will cause output to be unbuffered.

EXAMPLES
The following is an example of running dp noninteractively. It
should be noted that if one was doing disk partitioning on many
disks, it might prove useful to have a dpscript.
cat « EOF I dp -q Idev/rdsk/cOdOs31
#!dp
@(#)dpscript 2.1

164 # Initialize the map with 64 entries
add some partitions

FS type key: l=UNIX 2=Autorec. 3=Swap
[1 Name Type () Ee FS RFS UFS
a1 128 4096 Autorecovery\ 1 y 0 4096 0 2
a2 4224 111184 A/UX\ Root y o 111184 0 1 Y
a3 115408 32768 Swap y 0 32768 0 3
a4 152272 4096 Autorecovery\ 2 y 0 4096 0 2

wq # Write changes and quit
EOF

To print a description of the currently defined partitions, do the
following.

echo P I dp -q /dev/rdsk/cOdOs31

FILES
/bin/dp

SEE ALSO
pname(lM), altblk(4), bzb(4), dpme(4), ptab(4), au­
torecovery(8).

DIAGNOSTICS
dp produces various messages if the specified file does not exist.

February, 1990
Revision C

4

Y

dp(lM) dp(1M)

WARNINGS

5

At various times while fields are being modified, dp may produce
warning messages if it is determined that the modification made is
of a questionable nature. Even though dp doesn't produce a
warning, never assume that a modification of questionable nature
hasn't been made. In the event that a modification of questionable
nature is made while running as noninteractive (for example,
redirecting standard input from a disk file), dp exits.

February, 1990
Revision C

dslipuser(1M) dslipuser(lM)

NAME
dslipuser - display the current state of slip lines on a
slip server

SYNOPSIS
/etc/dslipuser

DESCRIPTION
dslipuser is used to display the / etc/ slip. user file on
the slip server. The / etc/ slip. user file records the
current number of slip users on the system and the number of
available slip interfaces.

EXAMPLES
The command

/etc/dslipuser

displays

No dialup SLIP users connected
(2 free lines)

when all the s 1 i p interfaces are free.

Sample output from / etc/ dslipuser when slip lines are
active is

User userJ connected as userl-slip (aa.bb.cc.dd) via s10
User user3 connected as user3-slip (ee.ff.gg.hh) via s11
(0 lines free)

The host names userl-slip and user3 -slip are from the file
/etc/ slip. hosts, which maintains the mapping between
user log-in names and slip host names or addresses.

DIAGNOSTICS
If the modes for the user file / et c / s 1 i p . use r are incorrect or
if it does not exist, then a message is returned indicating that the
program was unable to open that file.

FILES
/etc/slip.user

SEE ALSO
mkslipuser(lM), slip(lM), slip. user(4).

February, 1990
Revision C

1

dump. bsd(1M) dump. bsd(1M)

NAME
dump. bsd, rdump - copy the files within the named file
system to a dump. bsd archive

SYNOPSIS
/ etc/ dump. bsd [-Tfile-system-type] [key] ... [argument ...]
ffilesystem]
/ etc/ rdump [-Tfile-system-type] [key] ... [argument ...]
ffilesystem]

DESCRIPTION
dump. bsd and rdump copy to the backup device any files
within file system that have been changed after a certain date.
rdump allows use of a remotely connected backup device (see the
-f flag option). The key specifies the date and other options about
the dump and consists of characters from the set
0123456789bcfusdFwWn.

FLAG OPTIONS

1

The - T flag option indicates the file-system type, such as 4 . 2 or
5.2. If this option is not used, dump. bsd attempts to determine
the file-system type.

If more than one key is used that requires an associated argument,
then the arguments must be supplied in the same order as each
key.

The following options may be used for the value of key :

0-9 Set the "dump level" to the one-digit value specified. All
files modified since the last date stored in the file
/etc/dumpdates for the specified file system at lesser
levels are dumped. If a date is not determined by the level,
the beginning of time is assumed; thus the flag option 0
causes the entire file system to be dumped.

b

c

Use the associated argument as the blocking-factor for the
records of the backup device, rather than the default
blocking-factor of 1. This option should only be used with
the raw versions of device files. The letters b, k, m, or f
may be used at the end of the associated argument to indi­
cate a number of blocks, kilobytes, megabytes, or feet,
respectively.

Set the values for flag options band s to those appropriate
for the Apple® Tape Backup 40SC, including a default size
of 37.5 MB and a blocking-factor of 8K. If a value is also

February, 1990
RevisionC

dump. bsd(1M) dump. bsd(IM)

specified for the size of the media by using the s option,
then it is interpreted as the number of disk blocks rather
than the number of feet of tape.

f Place the dump on the associated argument instead of the
default device file / dev /tape. If / etc/rdump is used,
the associated argument should include a reference to the
system where the backup device is located. A colon
separates the remote-system name from the device file, as in

/etc/rdump -rbf 8k server:/dev/rmt/tc3

If the environmental shell variable TAPE is set and the f
option is not used, the value of TAP E is used as the device
file to which the output is written. If the f option is
specified along with an associated argument of -,
dump. bsd writes to standard output.

F Set the values for flag options b and s to those appropriate
for dual-density, 3.5-inch disks, including a default size of
800K. If a value is also specified for the size of the media
by using the s option, then it is interpreted as the number of
disk blocks rather than the number of feet of tape.

u If the dump completes successfully, write the date of the be­
ginning of the dump on the file /etc/dumpdates. This
file records a separate date for each file system and each
dump level. The contents of /etc/dumpdates is read­
able as text, consisting of one free-format record per line:
file-system name, increment level, and ctime(3) format
dump date. If necessary, / etc/ dumpdates may be edit­
ed to change any of the fields.

s Specify the size of the backup media in feet The number of
feet is taken from the associated argument. The letters b, k,
or m may be used at the end of the associated argument to
indicate a number of blocks, kilobytes, or megabytes instead
of feet. When the specified size is reached, dump. bsd
waits for the next floppy disk or tape volume. The default
tape size is 2300 feet.

d Specify the density of the tape, expressed in BPI and taken
from the associated argument. This is used in calculating
the amount of tape used per reel. The default is 1600.

w Cause dump. bsd to print out, for each file system in
/ etc/ dumpdates, the most recent dump date and level,

February, 1990
Revision C

2

dump. bsd(1M) dump. bsd(1M)

3

and highlight those file systems that should be dumped.
dump. bsd tells the operator what file systems need to be
dumped. This information is gleaned from the files
/etc/dumpdates and /etc/fstab. If the w flag op­
tion is set j all other flag options are ignored. and
dump. bsd exits immediately.

w Similar to w, but print only those file systems that need to be
dumped.

n Whenever dump. bsd requires operator attention, notify,
by a means similar to a wall(l), all of the operators in the
group operator.

If filesystem is a block device and is listed in /etc/fstab,
dump. bsd will use the corresponding raw device instead.

If no arguments are given, key is assumed to be gu, and a default
file system is dumped to the default tape. The default file system
is the root file system (I), and the default tape is / dev /tape.

dump. bsd requires operator intervention on these conditions:
end of tape, end of dump, tape write error, and tape open or disk
read errors (if there are more than a threshold of 32). In addition
to alerting all operators implied by the n key, dump. bsd in­
teracts with the operator on the dump. bsd control terminal at
times when dump. bsd can no longer proceed, or if something is
grossly wrong. All questions dump. bsd poses must be answered
by typing yes or no, appropriately.

Making a full dump involves a lot of time and effort, so
dump. bsd initiates a checkpoint at the start of each tape volume.
If writing to that volume fails for some reason, dump. bsd, with
operator permission, restarts itself from the checkpoint after the
old tape is rewound and removed and a new tape has been mount­
ed.

dump. bsd informs the operator of its progress at periodic inter­
vals, including usually low estimates of the number of blocks to
write, the number of tapes or floppy disks it will take, the time be­
fore completion, and the time remaining before the tape change.
The output is verbose, so others will know that the terminal con­
trolling dump. bsd is busy and will be busy for some time.

To perform dumps, start with a full (level 0) dump

dump.bsd Oun

February, 1990
RevisionC

dump. bsd(1M) dump. bsd(1M)

Next, dumps of active file systems are taken on a daily basis by
using a modified Tower of Hanoi algorithm with this sequence of
dump levels:

3254769899 ...

For the daily dumps, a set of 10 tapes per dumped file system is
used on a cyclical basis. Each week, a level 1 dump is taken, and
the daily Hanoi sequence repeats with 3. For weekly dumps, a set
of 5 tapes per dumped file system is used, also on a cyclical basis.
Each month, a level 0 dump is taken on a set of fresh tapes that is
saved forever.

FILES
/ete/dump.bsd
/ete/dumpdates
/ete/fstab
fete/group
/dev/tape

SEE ALSO

new format dump date record
dump table: file systems and frequency
to find group operator
default tape unit to dump to

epio(I), tp(I), finc(IM), restore(lM), rdump(IM),
tar(IM), volcopy(lM), fstyp(2), dump. bsd(4), fstab(4).

DIAGNOSTICS
dump. bsd exits with zero status on success. Startup errors are
indicated with an exit code of 1; abnormal termination is indicated
with an exit code of 3.

BUGS
Fewer than 32 read errors on the file system are ignored. Each
reel requires a new process, so parent processes for reels already
written just hang around until the entire tape is written.

dump. bsd with the w or w flag option does not report file sys­
tems that have never been recorded in /ete/dumpdates, even
if listed in / ete/fstab.

It would be convenient if dump. bsd knew about the dump se­
quence, kept track of the tapes scribbled on, told the operator
which tape to mount and when, and provided more assistance for
the operator running restore.

February, 1990
Revision C

4

errdead(IM) errdead(1M)

NAME
errdead - extract error records from a crash dump

SYNOPSIS
/ etc/ errdead dumpfile [namelist]

DESCRIYfION
When the system detects hardware errors, it generates an error
record containing pertinent information about the error. If the
error-logging daemon errdemon(IM) is not active or if the sys­
tem crashes before the record is placed in the error file, the system
holds the error information in a local buffer. errdead examines
a system dump, extracts error records, and passes them to
errpt(IM) for analysis. '

The argument dumpfile specifies the file (or memory) to examine.
You can specify the system namelist with namelist; / unix is the
default.

FILES
/etc/errdead
/unix
/usr/bin/errpt
/usr/tmp/errXXXXXX

DIAGNOSTICS

system namelist
analysis program
temporary file

Diagnostics may come from either errdead or errpt.

SEE ALSO
errdemon(lM), errpt(lM).

1 February, 1990
Revision C

errdemon(1M) errdemon(1M)

NAME
errdemon - error-logging daemon

SYNOPSIS
/usr / lib/ errdemon [file]

DESCRIPTION
The error logging daemon errdemon collects error records from
the operating system by reading the special file / dev / error and
places them infile. If you don't specify file when activating the
daemon, it uses /usr / adm/ errfile. errdemon creates file
if it does not exist; otherwise, it appends error records to file so
that it doesn't lose previous error data. errdemon does not
analyze the error records, this is done by errpt(lM). A software
kill signal (see kill(l)) terminates the error-logging daemon.
Only the superuser may start the daemon, and only one daemon
may be active.

FILES
/usr/lib/errdemon
/dev/error
/usr/adm/errfile

SEE ALSO

source of error records
repository for error records

kill(I), errpt(IM), errdead(lM), errstop(lM), er­
ror(?).

Feb~,1990 1
RevisionC

errpt(IM) errpt(IM)

NAME
errpt - process a report of logged errors

SYNOPSIS
errpt [-a] [-dey] [-e date] [-f] [-p n] [-s date] rJile ...]

DESCRIPTION

1

errpt processes data collected by the error logging mechanism
(errdemon(IM)) and generates a report of that data. The default
report summarizes all errors posted in the named files. The op­
tions described below apply to all files. If you don't specify a file,
errpt attempts to use /usr/adm/errfile.

A summary report lists: the options that may limit its complete­
ness, the time stamped on the earliest and latest errors, and the to­
tal number of errors of one or more types. Each device summary
contains: the total number of unrecovered errors, recovered errors,
errors which couldn't be logged, I/O operations on the device, and
miscellaneous activities on the device. It also includes as read er­
rors the number of times that errpt has difficulty reading input
data.

In addition to specific error information, any detailed report con­
tains all instances of the error logging process being started and
stopped, any time changes (via date(I)) that took place during
the interval being processed, and an appended summary of each
error type included.

A report may be limited to certain records in the following ways:

-a a detailed report including all error types.

-dey
a detailed report is limited to data about device dey, where
dey is a device identifier. errpt is familiar with the com­
mon form of identifiers (see Section 7 of this volume). The
devices for which errors are logged are system dependent.
Additional identifiers are in t and mem which include de­
tailed reports of stray-interrupt and memory-parity type er­
rors, respectively.

-e date
ignore all records posted later than date, where date has the
form mmddhhmmyy.

-f a detailed report reporting only unrecovered block device er­
rors.

February, 1990
RevisionC

errpt(lM) errpt(lM)

-p n
limit the detailed report to n pages.

-s date
ignore all records posted earlier than date, where date has the
fonn mmddhhmmyy.

FILES
/usr/bin/errpt
fete/master

/usr/adm/errfile

SEE ALSO

for configuration of devices in sys­
tem
default error file

date(1), errdead(1M), errdemon(lM), errfile(4).

BUGS
When illegal options are specified, e r rpt ignores them and gen­
erates default ouput.

February, 1990
Revision C

2

errstop(1M) errstop(IM)

NAME
errstop - terminate the error-logging daemon

SYNOPSIS
/ etc/ errstop [namelist]

DESCRIPTION
errstop terminates the error-logging daemon errdemon(IM).
It does this by executing ps(l) to determine the daemon's identity
and then sending it a software kill signal (see signal(3)); it uses
/unix as the system namelist if you don't specify one. Only the
superuser may use errstop.

FILES
/etc/errstop
/unix

SEE ALSO
ps(I), errdemon(1M), kill(2), signal(3).

1 February, 1990
RevisionC

escher(lM)

NAME
escher - autorecovery administration

SYNOPSIS
escher [-y] [-m]
escher file ...

DESCRIPTION

escher(lM)

e s che r determines if the regular files in the autorecovery file
systems (see autorecovery(8)) are out of date with respect to
the root or usr file systems. If a file is determined to be out of
date, a message will appear asking if the new file should be copied
to the autorecovery file system. escher will optionally mail to
root a list of out of date files, copy newer files to the au­
torecovery file systems or, if given a list of filenames, will add
these files to the Configuration Master List (CML) and copy these
files to the autorecovery file systems. The CML is described in
cml(4).

Note: escher may be run only by the superuser.

A hard disk may be divided into partitions. Each partition con­
tains one file system (see fs(4)). Information on all the partitions
on a disk is kept in the disk partition map (see dprne(4)) for that
disk. One of the fields in a dprne is the cluster number. This is
used to identify the group of partitions escher should use.

e s che r will only recognize partitions which reside on one disk.
escher will read the cluster number from nvram, (see
nvram(7)) and locate all the partitions in that cluster. A cluster
must contain a root partition, a swap partition, and at least one au­
torecovery partition. A cluster may also contain a partition known
as the us r partition. The us r partition contains a file system that
is intended to be mounted on /usr. There may be multiple au­
torecovery partitions in a cluster.

An autorecovery file system contains copies of regular files that
are needed for a minimal multiuser A/UX system. There are no
special files in autorecovery file systems. The CML is a list of
files required for multiuser NUX and resides on the root file sys­
tem. escher will check each file that is listed in the CML;
escher ignores all special files and directories. If any of these
files are invalid or are newer than the corresponding file in the au­
torecovery file systems, the user will be asked if the file should be
copied to the autorecovery file systems.

February, 1990
Revision C

1

escher(1M) escher(1M)

2

For each file that is copied, a new CML entry will be made. A
CML entry contains a list of "rules" about the file that specify
what the file's attributes should be. There are CML rules for the
following file attributes:

file type
linked filename
size
modification time
ownership
permissions
major and minor device numbers
version
checksum

The CML entry that is created by escher will have different
values from the previous entry and will have a limited number of
attribute specifications. This entry will have rules for:

filename
file type
size
modification time
ownership
permissions

escher flag options are:

-m Mail to root a list of files in autorecovery file systems that
are no longer faithful copies and may need to be updated.
With this option alone, no files will be copied to autorecovery
file systems.

-y Assume a "yes" response to questions that would be asked
about copying files to autorecovery file systems. It is advis­
able to first run escher with -m and verify that all of the
listed files are "good" before using this option. It is possible
that a file could be corrupt and should not be copied to the
autorecovery file systems.

escher with both -y and -m will update all the files in au­
torecovery file systems that are necessary and mail a list of
changed files to root. The -y and -m flag options may not be
used when a list of files is present on the command line.

February, 1990
RevisionC

escher(IM) escher(IM)

When escher is given a list of filenames, it will create an entry
in the CML list for each file and copy it to the autorecovery file
systems. The filenames must be full pathnames, beginning with /.
The CML entry will have simple rules as described above. The
named files should be files that are not currently in the CML and
do not reside in autorecovery file systems.

FILES
/etc/escher
/etc/eschatology/init2files

SEE ALSO
cml(4), dpme(4), fs(4), nvram(7), autorecovery(8).

DIAGNOSTICS
The diagnostic messages are intended to be self-explanatory.

If an autorecovery file system runs out of space while escher is
copying new files to it, escher will not attempt to update any of
the other files contained in that file system. escher will display
a message that indicates the file system is full.

WARNINGS
When escher is given a list of files to be added to the CML, the
user must include the directories the files reside in. In order for a
file to be restored through autorecovery, all the directories in the
pathname of a file must also be in the CML list.

escher requires that the CML file be sorted by filename.

February, 1990
Revision C

3

etheraddr(IM) etheraddr(IM)

NAME
etheraddr - get an Ethernet address

SYNOPSIS
/ etc/ etheraddr [slot]

DESCRIPTION
etheraddr prints the Ethernet address stored in ROM on the
board in slot number slot.

DIAGNOSTICS
etheraddr exits with the return status 0 if an Ethernet interface
and valid ROM are available. A nonzero exit status indicates
failure to find or read an Ethernet address for the host.

FILES
/etc/etheraddr

SEE ALSO
slots(3X), ae(5), arp(5P), inet(5F), intro(5).

1 February, 1990
Revision C

eu(IM) eu(IM)

NAME
eu - update autorecovery files

SYNOPSIS
/ etc/ eufile

DESCRIPTION
eu is used to maintain the files needed by the autorecovery feature
of NUX (see autorecovery(8)). It copies file to the au­
torecovery partition(s) and updates the relevant entry in
/etc/eschatology/init2files. If file is not found in
/etc/eschatology/init2files, an entry as described in
cml (4) will be created.

To prevent inconsistent updates while eu is running, a lockfile,
/ etc/ eschatology /FCML .lock, is used to single-thread
the updates to the file systems and the cml(4) file. Once eu is
complete, this lockfile is removed.

FILES
/etc/eu
/ etc/ eschatology / ini t2 files the data base
/ etc/ eschatology /FCML .lock the lock file

SEE ALSO
autorecovery(8), escher(1M), cml(4).

February, 1990
Revision C

1

eupdate(IM) eupdate(IM)

NAME
eupda te - update important files for autorecovery purposes

SYNOPSIS
/etc/eupdate

DESCRIPTION
eupdate updates appropriate system files for autorecovery use.
This command should be used after a machine has been
reconfigured with autoconfig(IM) or after modification of im­
portant relevant files (see below).

FTI...ES
/etc/HOSTNAME
/etc/NETADDRS
/etc/eupdate
/etc/inittab
/etc/startup.d/BNET
/etc/startup.d/ae6
/unix

SEE ALSO
autoconfig(IM), eu(IM), autorecovery(8).

1 February, 1990
RevisionC

exterr(IM) exterr(IM)

NAME
exterr - turn onjoffthe reporting of extended errors

SYNOPSIS
exterr / dev / devicename [choice]

DESCRIPTION
exterr turns on (or oft) the reporting of extended errors on the
specified device.

choice may be y or n (for "'yes" or "no") to turn error reporting
on or off, respectively.

If reporting of errors is turned "off" with the argument n, only
fatal errors are reported.

The default choice is "yes" (y), in which case soft as well as hard
errors are reported on the specified device. The precise determi­
nation of what error messages are printed is specific to each .dev­
ice driver. In general, though, exterr may be used to reduce the
amount of error information displayed. The devicename must be
the "raw" one to access the ioctl.

FILES
/bin/exterr

EXAMPLE
exterr /dev/xox n

turns to off the reporting of extended errors for device
/dev/xxxx.

February, 1990
Revision C

1

ff(lM) ff(lM)

NAME
f f - list file names and statistics for a file system

SYNOPSIS
/ete/ff [-an] [-en] [-iinode-list1 [-r] [-1] [-ron] [-njiie]
[-pprejix] [-3] [-u] special

DESCRIPTION
f f reads the special file's ilist and directories, assumes that it is a
file system, and saves inode data for files matching the selection
criteria. f f outputs the path name for each saved inode, and any
other file information you requested with the options described
below. Output fields are positional. The output is sorted by inode,
with the fields separated by tabs. f f' s default output line is:

path-name inumber

If you enable all the options, the output fields are:

path-name inumber size uid

In the following list, n is a decimal integer (optionally signed),
where +n means more than n, -n means less than n, and n means
exactly n. A day is a 24 hour period.

-a n select if the inode has been accessed in n days.

-e n select if the inode has been changed in n days.

-i inode-list
generate names for only those inodes specified in
inode-list. (An inode-list is a comma-separated list
of in ode numbers).

- I do not print the inode number after each path name.

-1 list path names for multiply linked files.

-m n select if the file has been modified in n days.

-n jile select if the inode has been modified more recently
than the argument jile.

-p prefix add prefix to each generated path name. . is the de­
fault.

-3 print the file size, in bytes, after each path name.

-u print the owner's login name after each path name.

1 February, 1990
Revision C

ff(IM) ff(IM)

EXAMPLE
ff -I /dev/dsk/eOdOsO

generates a list of file names on the specified file system.

ff -m -1 /dev/dsk/cOdOsO > /log/incbackup/usr/tuesday

produces an index of files and inumbers on the file system which
have been modified in the last 24 hours.

ff -i 451,76 /dev/rdsk/cOdOsO

obtains the path names for inodes 451 and 76 on the file system.

FILES
/ete/ff

SEE ALSO
find(I), fine(1M), free(IM), neheek(IM).

BUGS
Generates only a single path name for a multiply linked inode, un­
less you specify the -1 option. When you specify -1, no selec­
tion criteria apply to the names generated. It includes all possible
names for every linked file on the file system in the output.

On very large file systems, memory may run out before ff does.

February, 1990
RevisionC

2

fine(IM) fine(IM)

NAME
fine - fast incremental backup

SYNOPSIS
fine [-a n] [-e n] [-m n] [-n file] file-system raw-tape

DESCRIPTION
fine selectively copies the input file-system to the output raw­
tape. Mount the input file-system read-only to ensure an accurate
backup, although you can obtain acceptable results in read-write
mode. The tape must be previously labeled by labeli t (see
voleopy(lM».

We recommend using the f f command to produce an index of the
tape's contents before using fine. You can recover files on a
fine tape with the free command.

The argument n in the following options is a decimal integer (op­
tionally signed), where +n means more than n, -n means less than
n, and n means exactly n. A day is defined as a 24 hours.

- a n true if the file has been accessed in n days.

-e n

-m n
-n file

True if the inode has been changed in n days.

true if the file has been modified in n days.

true for any file which has been modified more recent­
ly than the argumentfile.

EXAMPLE
fine -m -2 /dev/rdsk/eOdOsO /dev/rmt/Om

writes a tape of all files from the /usr file-system modified in the
last 48 hours.

FILES
/bin/fine

SEE ALSO
epio(I), ff(lM), free(IM), voleopy(IM).

1 February, 1990
Revision C

fingerd(IM) fingerd(1M)

NAME
f i nge rd - remote user information server

SYNOPSIS
/usr/etc/in.fingerd

DESCRIPTION
fingerd is a simple protocol based on RFC742 that provides an
interface to the name and finger programs at several network
sites. The program reports status information about either the sys­
tem at the moment or a particular person in depth. There is no re­
quired format and the protocol consists mostly of specifying a sin­
gle "command line".

fingerd listens for TCP requests at port 79. Once connected it
reads a single command line terminated by a <CR><LF> which is
passed to finger(l). fingerd closes its connections as soon
as the output is finished.

If the line is null (i.e. just a <CR><LF> is sent) then finger re­
turns a "default" report that lists all people logged into the system
at that moment.

If a login name is specified (so fingerd receives
eric<CR><LF», then more extensive information is provided for
that user, whether logged in or not. Allowable user names in the
command line include both login names and user names. If a
name is ambiguous, all possible derivations are returned.

FILES
/usr/etc/in.fingerd

SEE ALSO
finger(l).
RFC742 (DNN Network Information Center, SRI International)

BUGS
Connecting directly to the server from a TIP or an equally
narrow-minded TELNET-protocol user program can result in
meaningless attempts at option negotiation being sent to the
server, which will foul up the command line interpretation.
fingerd should be enhanced to filter out lAC's and perhaps
even respond negatively (lAC WON'T) to all option commands
received.

February, 1990 1
Revision C

finstall(1M) finstall(lM)

NAME
finstall - install NUX commercial software from floppy
disks

SYNOPSIS
finstall

DESCRIPTION
finstall provides a standard and consistent method for instal­
ling software from floppy disks onto an NUX system. fin­
stall displays a series of messages and prompts during the ins­
tallation process. finstall prompts you for which floppy drive
to use and for the directory in which to install the software. You
can use the default answer by pressing return. You can optionally
specify certain default answers for finstall by creating a
. finstallrc or /etc/finstallrc file before running
finstall.

finstall checks to make sure you have enough space on the
installation directory to install the software. finstall also
displays the list of files that will be installed before actually instal­
ling them. finstall then prompts you one last time for permis­
sion to proceed with the installation.

You can stop the finstall procedure at anytime by giving it an
interrupt, which is normally the CONlROL-C key.

finstall creates, in a subdirectory of / etc/ finstall. d, a
list of the files that were installed; the list is placed into the
vendorname/swname/vname/installedfiles file. For ex­
ample, if you have installed the pqr software version 1.0 from the
XYZ Company, finstall creates the list of files that were in­
stalled in XYZ/pqr/l. O/installedfiles in the directory
/etc/finstall. d.

FILES
/usr/bin/finstall

SEE ALSO
newunix(lM), finstallrc(4).

NOTES

1

Users of the csh command shell will need to run the rehash
command after installing new software so that the PATH variable
is updated.

February, 1990
Revision C

free(1M) free(1M)

NAME
free - recover files from a backup tape

SYNOPSIS
/ ete/ free [-ppath] [-freqfile] raw-tape inumber: name ...

DESCRIPTION
free recovers the files identified by inumber from the specified
raw-tape. This is a backup tape written by voleopy(lM) or
f ine(1M). The data for each recovery request is written into the
name file.

If any directories are missing in the paths of recovery names they
will be created.

-freqfile specify a file containing recovery requests. The format
is

inumber:name

with one request per line.

-ppath specify a path for names not beginning with / or . / .
The default pathname is your current working directo­
ry.

EXAMPLE
free /dev/rmt/Om 1216:junk

recovers a file, with inumber 1216, into the file junk in your
current working directory.

free -p /usr/sre/emd /dev/rmt m 14156:a 1232:b
3141:/usr/joe/a.e

recovers files with inumbers 14156, 1232, and 3141 into files:

/usr/sre/emd/a
/usr/sre/emd/b
/usr/joe/a.e

FILES
fete/free

SEE ALSO
epio(l), ff(1M), fine(lM), voleopy(lM).

BUGS
While creating the intermediate directories contained in a path­
name, free can only recover inode fields for those directories
contained on the tape and requested for recovery.

February, 1990 1
Revision C

fsck(IM) fsck(IM)

NAME
fsck - check file-system consistency and interactively repair

SYNOPSIS
/ etc/ fsck -T 5.2 [-y] [-n] [-mtimeout] [-sX] [-SX]
[-tjile] [-q] [-Doptions ...] [-f] [-ppasstostart]
[svfs-jilesystem . ..]

/etc/fsck [-bblock-number] [-y] [-n] [-mtimeout] -T 4.2
[-ppasstostart] [ufs-filesystem ...]

DESCRIPTION
fsck audits and interactively repairs inconsistent conditions for
A/UX® file systems. Iffilesystem is not specified, fsck reads a
list of default file systems from the file / et c / f stab. If the file
system is consistent, then only the number of files, number of
blocks used, and number of blocks free are reported. If the file
system is inconsistent, the operator is prompted for confirmation
to proceed before each corrective action is attempted. Frequently
corrective actions result in some loss of data. The amount and
severity of data lost may be determined by examining various
parameters such as non-zero filesize. Typically, each consistency
correction is gated by the operator's yes or no response. Howev­
er, if the operator does not have write permission for jilesystem,
fsck merely indicates corrective actions needed.

fsck has more consistency checks than its predecessors check,
dcheck, fcheck, and icheck combined.

Checking the raw device is almost always faster and should be
used with everything but the root file system. In addition, any file
system other than the root file system should be unmounted at the
time that it is checked with fsck. (It is not possible to un mount
the root file system.)

FLAG OPTIONS

1

The flag options for the f s c k command differ depending on the
type of file system.

The following flag options apply to both System V file systems
(SVFS) and Berkeley 4.2 file systems (UFS):

-Tjile-system-type
Indicate the file-system type, for example, 4. 2 for a
Berkeley 4.2 file system (UFS) or 5 . 2 for a SVFS file sys­
tem. If this option is not used, f sck attempts to determine
the type.

February, 1990
Revision C

fsck(IM) fsck(IM)

-y Assume a yes response to all questions asked by fsck.

-n Assume a no response to all questions asked by f s c k.
This flag option does not open the file system for writing.

-mtimeout
Use a Macintosh® user interface. This causes the
StartMonitor to move the progress bar forward
periodically during the boot sequence. In addition, if
fsck finds a problem with a file system, it calls
/ etc/macquery to post a Macintosh alert box asking
the user if he or she would like to repair the file system. If
the user clicks the default Repair button in the alert box,
fsck assumes a yes response to all further questions re­
garding that file system. If the user clicks Don't Repair,
fsck assumes a no response to all further questions re­
garding that file system. If a timeout value greater than 0 is
given, the dialog automatically selects the default button
after that number of seconds. If timeout is not given, the
default is 0, indicating that the alert should not autmatical­
ly time out.

-ppasstostart
Similar to the -q option, but mid-progress phase messages
are also suppressed. Besides quietly fixing ("preening")
certain file-system inconsistencies, the -p flag option and
passtostart number provide another way to specify which
file systems to check. passtostart specifies a threshold
value that triggers the checking of a file system depending
on itspassno field in /etc/fstab (see fstab(4». The
default passtostart number is 1. If the value of the pass
number is 2, as it normally is for the in
/ etc/bcheckrc, only those file systems in
/etc/fstab with pass numbers of 2 or greater are
checked. Only partitions in fstab that are mounted rw
or ro are subject to being checked this way. If the super­
block state field indicates that the file system was properly
unmounted, it is skipped.

The following options are interpreted by fsck for a SVFS file
system:

-sX
Ignore the actual free list and (unconditionally) reconstruct a
new one by rewriting the superblock of the file system. The

February, 1990
Revision C

2

fsck(IM) fsck(IM)

3

-SX

file system should be unmounted during this operation, and if
this is not possible, care should be taken that the system is
quiescent and that it is rebooted immediately afterward. This
precaution is necessary so that the obsolete main memory
copy of the superblock does not continue to be used, or to be
written onto the file system.

The -sX flag option allows for creating an optimal free-list
organization. The argument X should be in the format
blocks-per-cylinder: blocks-to-skip. If X is not given, the
values used when the file system was created are used. If
these values were not specified, then the value 400: 7 is
used.

Conditionally reconstruct the free list This flag option is like
- sX except that the free list is rebuilt only if no discrepancies
were discovered in the file system. Using -s forces a no
response to all questions asked by fsck. This flag option is
useful for forcing free-list reorganization on uncontaminated
file systems.

-tfile
Use a scratch file if fsck cannot obtain enough memory to
maintain its tables. If the -t option is specified, file is used,
if needed, as the scratch file. Without the -t flag, fsck
prompts the operator for the name of a scratch file. The file,
when chosen, should not be on the file system being checked,
and if it is not a special file or did not already exist, it is re­
moved when fsck completes.

-q Suppress progress messages as well as eliminate the need to
confim certain corrective actions. Unreferenced f if 0 s are
silently removed. If fsck detects inconsistencies, counts in
the superblock are automatically fixed, and the free list sal­
vaged. Inconsistencies other than these still require
confirmation.

-Doptions
Check directories for bad blocks. If options is empty, the
directories are merely checked. The B option checks for and
clears parity bits in filenames, C checks whether all trailing
characters in the filename are null, and cz checks and writes
nulls to all trailing characters in the filename.

February, 1990
RevisionC

fsck(IM) fsck(lM)

-f Use a fast check to check blocks and sizes (phase 1) and the
free list (phase 5). The free list is reconstructed (phase 6) if
necessary.

-ppasstostart
Similar to the -q option, but midprogress phase messages are
also suppressed. Besides quietly fixing (preening) certain
file-system inconsistencies, the -p flag option and passtostart
provide another way to specify which file systems to check.
The value of passtostart specifies a threshold value that
triggers the checking of a file system depending on its passno
field in /etc/fstab (see fstab(4)). The default number
for passtostart is 1. If the value of the pass number is 2, as it
normally is for the in / etc/bcheckrc, only those file sys­
tems in /etc/fstab with pass numbers of 2 or greater are
checked. Only SVFS partitions in fstab that are mounted
rwor ro are subject to being checked this way. If the super­
block state field indicates that the file system was properly
unmounted, it is skipped.

The following flag option is unique to fsck for a Berkeley 4.2
(UPS) file system:

- bblock-number
Use the block specified immediately after the flag as the
superblock for the file system. Block 32 is always an alter­
nate superblock.

Consistency Checks Performed
Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free list are
checked.

2. Blocks claimed by an inode or the free list outside the range
of the file system are checked.

3. Incorrect link counts are checked.
4. Size checks are performed to check for:

incorrect number of blocks
directory size not correctly aligned

5. Checks for bad inode format are performed.
6. Checks for blocks not accounted for anywhere are per­

formed.
7. Directory checks are performed to find:

files pointing to unallocated inodes
inode numbers out of range

February, 1990
Revision C

4

fsck(IM) fsck(IM)

8. Superblock checks are perfonned for:
more than the maximum number of inodes.
more blocks for inodes than there are in the file system

9. Checks for a bad free-block list fonnat are perfonned.
10. Checks for incorrect total free block or free inode count, or

both, are perfonned.

Reconnection of dislocated files
Orphaned files and directories (allocated but unreferenced) are,
with the operator's confirmation, reconnected, if not empty, by
placing them in the lost+found directory. The user is notified
if the file or directory is empty or not. If it is empty, fsck silent­
ly removes them and forces the reconnection of nonempty direc­
tories. The name assigned is the inode number. The only restric­
tion is that the directory lost+found must preexist in the root
of the file system being checked and must have empty slots in
which entries can be made. This is accomplished by making a
lost+found directory, copying a number of files to the directo­
ry, and then removing the files before fsck is executed. See
mklost+found(1M).

EXAMPLES
fsck /dev/rdskO/cOdOsO

checks the consistency of the file system referred through
/dev/rdskO/cOdOsO.

FILES
/etc/fsck
/etc/ufs/fsck
/etc/svfs/fsck
/etc/%fsck

/etc/fstab Contains default list of file systems to
check

SEE ALSO
cl ri(IM), f si rand(1M), mkf s(IM), ncheck(1M),
newfs(1M), typefs(IM), fstab(4), fs(4).

"Checking the NUX File System: fsck," inAIUX Local Sys­
tem Administration.

DIAGNOSTICS

5

The diagnostics produced by fsck are intended to be self­
explanatory .

February, 1990
Revision C

fsck(IM) fsck(IM)

BUGS
Inode numbers for . and . . in each directory should be checked
for validity.

February, 1990
Revision C

6

fsdb(lM) fsdb(lM)

NAME
f sdb - debug the file system

SYNOPSIS
/etc/fsdb [-T4 .2] [-?] [-0] [-pstring] [-w] special

/ etc/fsdb [-TS. 2] special [-]

DESCRIPTION

1

f s db can be used to patch up a damaged file system after a crash.
It has conversions to translate block and inumbers into their
corresponding disk addresses. Also included are mnemonic
offsets to access different parts of an inode. These greatly simpli­
fy the process of correcting control-block entries or descending
the file-system tree.

Since fsdb reads the disk raw, it is able to circumvent normal
file-system security. Extreme caution is advised in determining its
availability on the system. Suggested permissions are 600 and
owned by bin.

fsdb has different formats depending on the type of file system
you are debugging. fsdb can be used for either a Berkeley 4.2
file system (UFS) or a System V file system (SVFS).

f sdb contains several error-checking routines to verify inode and
block addresses. These routines can be disabled, if necessary, by
invoking fsdb with the -0 option for a UPS file system or by us­
ing the - option for a SVFS file system. The 0 command works
for both file systems.

fsdb reads a block at a time and therefore works with raw as well
as block I/O. A buffer management routine is used to retain com­
monly used blocks of data in order to reduce the number of read
system calls. All assignment operations result in an immediate
write-through of the corresponding block. Note that in order to
modify any portion of the disk for a UPS file system, f sdb must
be invoked with the -w option.

Wherever possible, syntax similar to adb syntax was adopted to
promote the use of fsdb through familiarity.

f sdb considers numbers in UPS as hexadecimal by default and
considers numbers in SVFS as decimal by default. However, the.
user has control over how data is to be displayed or accepted. The
base command displays or sets the input/output base. Once set,
all input defaults to this base, and all output is shown in this base.
The base can be overriden temporarily for input by preceding hex-

February, 1990
Revision C

fsdb(lM) fsdb(lM)

adecimal numbers with Ox, preceding decimal numbers with Ot,
or preceding octal numbers with o. Hexadecimal numbers begin­
ning with a-f or A-F must be preceded with Ox to distinguish them
from commands.

Disk addressing by fsdb is at the byte level. However, fsdb
offers many commands to convert a desired inode, directory entry,
block, superblock, and so on, to a byte address. Once the address
is calculated, f sdb records the result in the current address, or
dot.

Several global values are maintained by f sdb: the current base
(referred to as base), the current address (referred to as dot), the
current inode (referred to as inode), the current count (referred to
as count), and the current type (referred to as type). Most com­
mands use the preset value of dot in their execution. For example,

> 2:inode
first sets the value of dot to 2, The: (colon) alerts the start of a
command, and the inode command sets inode to 2. A count is
specified after a, (comma). Once set, count remains at this value
until a new command is encountered, which then resets the value
back to 1 (the default). So, if

> 2000,400/X
is typed, 400 hex longs are listed from 2000, and when completed,
the value of dot is 2000 + 400 * sizeof (long). If a RETURN is then
typed, the output routine uses the current values of dot, count, and
type and displays 400 more hex longs. A * causes the entire block
to be displayed.

End of fragment, block, and file are maintained by fsdb. When
displaying data as fragments or blocks, an error message is
displayed when the end of fragment or block is reached. When
displaying data using the db, ib, directory, or file com­
mands, an error message is displayed if the end-of-file is reached.
This is mainly needed to avoid passing the end of a directory or
file and getting unknown and unwanted results.

Two examples showing several commands and the use of RETURN
are:

> 2:ino; O:dir?d
> 2:ino; O:db:block?d

These two examples are synonymous for getting to the first direc­
tory entry of the root of the file system. Once there, subsequent
use of RETURN (or +, -) will advance to subsequent entries. Note
that these two examples

February, 1990
Revision C

2

fsdb(lM) fsdb(1M)

> 2:inode; :ls
> :ls /

are also synonymous.

FLAG OPTIONS
The flag options available to fsdb for a UPS file system are:

-? Display usage.
-0 Override some error-conditions.
-pstring Set prompt to string.
-w Open for write.

The flag option available for a SVFS file system is:
Disable error checking routines to verify
inode and block addresses.

EXPRESSIONS
UFS

3

The symbols recognized by fsdb for a UPS file system are:
RETURN

Update the value of dot by the current value of type and
display using the current value of count.

4/: Indicate numeric expressions that may be composed of +,
-, *, and % operators (evaluated left to right) and may use
parentheses. Once evaluated, the value of dot is updated.

, count Indicate count. The global value of count is updated to
count. The value of count remains until a new command
is run. A count specifier of * attempts to show a block of
information. The default for count is 1.

? f Display in structured style with format specifier f (see the
section "Formatted Output").

/ f Display in unstructured style with format specifier f (see
the section "Formatted Output").
Indicate the value of dot.

+e Increment the value of dot by the expression e. The
amount actually incremented is dependent on the size of
type:

dot = dot + e * sizeof (type)
The default for e is 1.

-e Decrement the value of dot by the expression e (see +).
*e Multiply the value of dot by the expression e. Multipli­

cation and division don't use type. In the above calcula­
tion of dot, consider the sizeof (type) to be 1.

%e Divide the value of dot by the expression e (see *).

February, 1990
Revision C

fsdb(lM) fsdb(lM)

< name Restore an address saved in register name, which must be
a single letter or digit.

> name Save an address in register name, which must be a single
letter or digit.

= / Display indicator. If/is a legitimate format specifier (see
the section "Formatted Output"), then the value of dot is
displayed using format specifier f. Otherwise, assign­
ment is assumed (see the next item).

[s] [e]
Indicate assignment. The address pointed to by dot has
its contents changed to the value of the expression e or to
the ASCII representation of the quoted (") string s. This
may be useful for changing directory names or ASCII file
information.

=+ e Increment assignment. The address pointed to by dot has
its contents incremented by expression e.

=- e Decrement assignment. The address pointed to by dot
has its contents decremented by expression e.

SVFS
The symbols recognized by fsdb for a SVFS file system are

41= Indicate an absolute address.
i Convert from an inumber to an inode

b
d
+-,
q
>,<

=+

dress.
Convert to a block address.
Indicate directory slot offset.
Address arithmetic.
Quit.
Save and restore an address.
Indicate numerical assignment.
Increment assignment.
Decrement assignment.

=" " " " " "

o
P
f
B
W
D

February, 1990
RevisionC

Indicate character-string assignment.
Indicate error-checking flip-flop.
Indicate general print facilities.
Indicate file print facility.
Indicate byte mode.
Indicate word mode.
Indicate double-word mode.
Escape to the shell.

ad-

4

fsdb(lM) fsdb(lM)

5

The print facilities generate a formatted output in various styles.
The current address is normalized to an appropriate boundary be­
fore printing begins. It advances with the printing and is left at the
address of the last item printed. The output can be terminated at
any time by typing the interrupt character. If a number follows
the p symbol, that many entries are printed. A check is made to
detect block boundary overflows because logically sequential
blocks are generally not physically sequential. If a count of 0 is
used, all entries to the end of the current block are printed. The
print options available are:

i
d
o
e
c
b

Print as inodes.
Print as directories.
Print as octal words.
Print as decimal words.
Print as characters.
Print as octal bytes.

The f symbol is used to print data blocks associated with the
current inode. If followed by a number, that block of the file is
printed. (Blocks are numbered from 0.) The desired print option
letter follows the block number, if present, or the f symbol. This
print facility works for small as well as large files. It checks for
special devices and checks that the block pointers used to find the
data are not O.

Dots, tabs, and spaces may be used as function delimiters but are
not necessary. A line with just a newline character increments the
current address by the size of the data type last printed; that is, the
address is set to the next byte, word, double word, directory entry,
or inode, allowing the user to step through a region of a file sys­
tem. Information is printed in a format appropriate to the data
type. Bytes, words, and double words are displayed with the octal
address followed by the value in octal and decimal. A . B or . D is
appended to the address for byte and double-word values, respec­
tively. Directories are printed as a directory slot offset followed
by the decimal inumber and the character representation of the en­
try name. Inodes are printed with labeled fields describing each
element. .

UFS COMMANDS
A command must be prefixed by a : (colon) character. Only
enough letters of the command to uniquely distinguish it are need­
ed. Multiple commands may be entered on one line by separating
them by a space, tab, or ; (semicolon).

February, 1990
RevisionC

fsdb(lM) fsdb(lM)

In order to view a potentially unmounted disk in a reasonable
manner, fsdb offers the cd, pwd. Is. and find commands.
The functionality of these commands substantially matches that of
their UNIX® counterparts (see individual commands for details).
The • *'. '1'. and • [-]' wildcard characters are available.

base=b
Display or set base. As stated above. all input and output
is governed by the current base. If the =b is left off. the
current base is displayed. Otherwise. the current base is
set to b. Note that b is interpreted using the old value of
base. so to ensure correctness, use the 0, 0 t, or 0 x prefix
when changing base. The default for base is hexade­
cimal.

block Convert the value of dot to a block address.

cd dir Change the current directory to directory dir. The
current values of inode and dot are also updated. If no
dir is specified. then change directories to in ode 2 ("!,,).

cg Convert the value of dot to a cylinder group.

directory
If the current inode is a directory. then convert the value
of dot to a directory slot offset in that directory so that
dot now points to this entry.

file Take the value of dot as a relative block count from the
beginning of the file. The value of dot is updated to the
first byte of this block.

find dir [-name n] [-inurn i]
Find files by name or inumber. find recursively
searches directory dir and below for filenames whose
inumber matches i or whose name matches pattern n.
Note that only one of the two options (-name or -inurn)
may be used at one time. Also, -print is not needed or
accepted.

fill=p
Fill an area of disk with pattern p. The area of disk is
delimited by dot and count.

fragment
Convert the value of dot to a fragment address. The only
difference between the fragment command and the
block command is the amount that is able to be

February, 1990
Revision C

6

fsdb(1M) fsdb(IM)

7

displayed.

inode Convert the value of dot to an inode address. If success­
ful, the current value of inode is updated as well as the
value of dot. As a convenient shorthand, if : inode ap­
pears at the beginning of the line, the value of dot is set to
the current inode and that inode is displayed in inode for­
mat.

Is [-R] [-1] patl pat2 ...
List directories or files. If no file is specified, the current
directory is assumed. Either or both of the options may
be used, but if used, must be specified before the
filename specifiers. Also, as stated above, wildcard char­
acters are available, and multiple arguments may be
given. The long listing shows only the inumber and the
name. Use the inode command with '?i' to get more
information.

override
Toggle the value of override. Some error conditions may
be overridden if override is toggled on.

promptp
Change the fsdb prompt to p, which must be surrounded
by (" ").

pwd Display the current working directory.

quit Quit fsdb.

sb Take the value of dot as a cylinder group number and
then convert it to the address of the superblock in that
cylinder group. As a shorthand, : sb at the beginning of
a line sets the value of dot to the superblock and displays
it in superblock format.

Escape to the shell.

UFS Inode Commands
In addition to the previous commands, several commands deal
with inode fields and operate directly on the current inode (they
still require the ':'). They may be used to display or change the
particular fields more easily. The value of dot is only used by the
, : db' and ' : ib' commands. On completion of the command, the
value of dot is changed to point to that particular field. For exam­
ple,

February, 1990
RevisionC

fsdb(IM) fsdb(IM)

> :In=+l
increments the link count of the current inode and sets the value of
dot to the address of the link-count field.

a t Access time.

bs Block size.

ct Creation time.

db Use the current value of dot as a direct block index,
where direct blocks number from 0-11. In order to
display the block itself, you need to pipe this result into
the block or fragment command. For example,

> 1:db:block,20/X
would get the contents of data block field 1 from the
inode and convert it to a block address. Then 20 longs
are displayed in hexadecimal (see the section "Formatted
Output").

gid Group ID.

ib Use the current value of dot as an indirect block index
where indirect blocks number from 0-2. This only gets
the indirect block itself (the block containing the pointers
to the actual blocks). Use the file command and start
at block 12 to get to the actual blocks.

In Link count.

mt Modification time.

md Mode.

rna j Major device number.

min Minor device number.

nm Although listed here, this command actually operates on
the directory-name field. Once poised at the desired
directory entry (using the directory command), this
command allows you to change or display the directory
name. For example,

> 7:dir:nm="foo"
gets the seventh directory entry of the current inode and
change its name to foo. Note that names cannot be made
larger than the field is set up for. If an attempt is made,
the string is truncated to fit and a warning message to this
effect is displayed.

February, 1990
Revision C

8

fsdb(lM) fsdb(lM)

s z File size.

uid UserID.

SVFS Inode Commands
The following mnemonics are used for inode examination and
refer to the current working inode:

md Mode
In Link count
uid UserIDNumber
gid Group ID number
sz File size
a# Data block numbers (0-12)
a t Access time
mt Modification time
rna j Major device number
min Minor device number
gen Generation number

FORMATIED OUTPUT

9

There are two styles and many format types. The two styles are
structured and unstructured. Structured output is used to display
inodes, directories, superblocks and the like. Unstructured output
just displays raw data. The following table shows the different
ways of displaying:

?

/

c
i
d
s

Display as cylinder groups.
Display as inodes.
Display as directories.
Display as superblocks.

b Display as bytes.
c Display as characters.
o 0 Display as octal shorts or longs.
d D Display as decimal shorts or longs.
x X Display as hexadecimal shorts or longs.

The format specifier immediately follows the '/' or '?' character.
The values displayed by '/b' and all '?' formats are displayed in
the current base. Also, type is appropriately updated on comple­
tion.

February, 1990
RevisionC

fsdb(IM) fsdb(IM)

EXAMPLES
The following two sections list examples of the f s db command.
Examples in the UPS file system are listed first, followed by ex­
amples in the SVFS file system.

UFS Examples
(2000+400%(20+20))=D

Display 2010 in decimal (use of f sdb
as a calculator for complex arithmetic).

386 : ino? i Display inumber 386 in an inode for­
mat. This now becomes the current
inode.

: 1 n = 4 Change the link count for the current
inode to 4.

: In=+ 1 Increment the link count by 1.

: ct=x Display the creation time as a hexade­
cimallong.

: mt=t Display the modification time in time
format.

0: file/ c Display, in ASCII, block 0 of the file
associated with the current inode.

2: ino, *?d Display the directory entries of the first
blocks for the root inode of this file
system. It stops prematurely if the
end-of-file is reached.

5:dir:inode; O:file,*/c
Change the current inode to that associ­
ated with the fifth directory entry (num­
bered from 0) of the current inode. The
first logical block of the file is then
displayed in ASCII.

: sb Display the superblock of this file sys­
tem.

1 : cg? c Display the cylinder-group information
and summary for cylinder group 1.

2: inode; 7: dir=3 Change the inumber for the seventh
directory slot in the root directory to 3.

February, 1990 10
Revision C

fsdb(IM) fsdb(IM)

11

7 : di r : nm= name"" Change the name field in the directory
slot to name.

2 : db: block, *?d Display the third block of the current
inode as directory entries.

3c3:fragment,20:fill=Ox20
Get fragment 3c3 and fills 20 type ele­
ments with Ox20.

2 050 = 0 x f f f f Set the contents of address 2050 to
Oxffffffff. Oxffffffff may be truncated
depending on the current type.

lc92434= this" is some text" " "

SVFS Examples
386i

In=4

In=+l

fc

2i.fd

dSi.fc

S12B.pOO

2i.aOb.d7=3

Places the ASCn for the string at
Ic92434.

Print inumber 386 in an inode format.
This now becomes the current working
inode.

Change the link count for the working
inode to 4.

Increment the link count by I.

Print, in ASCII, block 0 of the file asso­
ciated with the working inode.

Print the first 32 directory entries for
the root inode of this file system.

Change the current inode to that associ­
ated with the fifth directory entry (num­
bered from 0) found from the above
command. The first logical block of
the file is then printed in ASCII.

Print the superblock of this file system
in octal.

Change the inumber for the seventh
directory slot in the root directory to 3.
This example also shows how several
operations can be combined on one
command line.

February, 1990
RevisionC

fsdb(IM)

d7.nm= name""

C2b.pOd

WARNINGS

fsdb(IM)

Change the name field in the directory
slot to the given string. Quotes are op­
tional when used with nm if the first
character is alphabetic.

Print the third block of the current
inode as directory entries.

Extreme caution is advised in determining the availability of
fsdb on the system. Suggested permissions are 600 and owned
by bin.

SEE ALSO
fsck(IM), dir(4), fs(4).

February, 1990
Revision C

12

fsentry(lM) fsentry(lM)

NAME
fsentry - create a file-system-table entry

SYNOPSIS
fsentry -ttype [-0 optlist] [-d dumpfreq] [-p passno] [-n]
[-f] file-system mount-point

DESCRIPTION
fsentry creates entries in the file-system table, /etc/fstab.
Only one entry is allowed per invocation. The syntax is similar to
that of the mount command. fsentry also optionally mounts
the file system for which an entry has been generated.

FLAG OPTIONS

1

The following command-line arguments are interpreted by f sen­
try:

-t type

file-system

mount-point

Specify the type of file system. This must be
nfs, 4.2 (UFS), 5.2 (SVFS), swap, or ig­
nore.

Specify the file system to be mounted. In the
case of remote (NFS) file systems, this is of the
form host:mount-point where host is the name of
the remote host system, and mount-point is the
full pathname of a directory on that system. In
the case of local (UFS, SVFS, and swap) file
systems, the form is /dev/dsk/cxdOsy ,
where x is the SCSI ID number of the hard disk
containing the file system, and y is the slice (usu­
ally between 0 and 31, inclusive). In the case of
ignore, it may be of either form.

Specify the full pathname of a directory on the
local machine, to be used as the mount point. If
this directory does not exist, fsentry creates
it. This option is ignored for type swap.

Additional command-line flag options allow administrators to
override default values. The following options are available:

-0 optlist Specify a comma-separated list of mounting op­
tions, as used by mount. For remote (NFS) file
systems, the default options are rw, bg, intr.
For swap, 4. 2 (UFS), or 5 . 2 (SVFS) file sys­
tems, the default is rw. For type ignore, the
default is determined based on the form used for

February, 1990
RevisionC

fsentry(lM) fsentry(lM)

file-system.

-d dumpfreq Specify the dump frequency, used by the
dump. bsd command. The default is O. This
option is ignored for remote (NFS) file systems
and swap file systems.

-p passno Specify the pass number, used by fsck. The
default is 2. This option is ignored for remote
(NFS) and swap file systems.

-n Specify the "No auto" option. By default, file
systems are automatically mounted after a file­
system-table entry is generated and each time the
system boots. This option sets the noauto flag
in the entry. The file system must be mounted
explicitly with the mount command. fsentry
does not mount the file system.

-f Force creation of file-system-table entry. If
/ etc/fstab already contains an existing entry
for either file system or mount-point, fsentry
prints an error message and quits. This option
forces f sen try to generate a file-system-table
entry that may overlap an existing entry. Note
that no checking is done for existing entries if
the type specified is ignore.

FILES
/etc/fsentry
/ et c / f stab The file-system table

SEE ALSO
fsck(lM), dump. bsd(lM), mount(IM), fstab(4).

February, 1990
Revision C

2

fsirand(IM) fsirand(IM)

NAME
fsirand - install random inode generation numbers

SYNOPSIS
fsirand [-p] [-Tfile-system-type] special

DESCRIPTION
fsirand installs random inode generation numbers on all the
inodes on device special and also installs a file system ID in the
superblock. This helps increase the security of file systems ex­
ported by the network file system (NFS).

fsirand must be used only on an unmounted file system that has
been checked with fsck(1M). The only exception is that it can
be used on the root file system in single-user mode, if the system
is immediately rebooted afterward.

FLAG OPTIONS
The following flag options are interpreted by fsirand:

-p Print out the generation numbers for all the inodes, but do not
change the generation numbers.

-T Indicate the file-system type, for example 4. 2 or 5. 2. If
this option is not present, fsirand attempts to determine
the file-system type.

FILES
/etc/fsirand

SEE ALSO
fsdb(IM), fs(4), inode(4).

1 February, 1990
RevisionC

fsstat(lM) fsstat(lM)

NAME
f sst at - report file-system state

SYNOPSIS
fsstat [-Tfile-system-type] file-system

DESCRIPTION
f sst at reports the state of the specified file-system. If the sys­
tem was brought down cleanly or if file-system was successfully
repaired by fsck(lM), the state should be OK.

FLAG OPTIONS
The following flag option is interpreted by f sst at:

-Tfile-system-type
Indicate the file-system type, such as 4.2 (UPS) or 5.2
(SVFS). If this option is not used, fsstat attempts to
determine the type.

FILES
/etc/fsstat
/etc/fs/*/fsstat

SEE ALSO
fsck(lM), fstyp(3), fs(4).

February, 1990
RevisionC

1

ftpd(IM) ftpd(IM)

NAME
ft pd - Internet File Transfer Protocol server

SYNOPSIS
/usr / etc/ in. ftpd [-d] [-1] [-ttimeout]

DESCRIPTION

1

ftpd is the DARPA Internet File Transfer Prototocol server pro­
cess. The server uses the TCP protocol and listens at the port
specified in the ftp service specification; see services(4N).

If the -d flag option is specified, debugging information is written
to the standard output.

If the -1 flag option is specified, each ftp session is logged on the
standard error output.

The ftp server will timeout an inactive session after 15 minutes.
If the -t flag option is specified, the inactivity timeout period will
be set to timeout.

The ftp server currently supports the following ftp requests;
case is not distinguished.

Request Description

ABOR
ACCT
ALLO
APPE
CD UP
CWD
DELE
HELP
LIST
MKD
MODE
NLST
NOOP
PASS
PASV
PORT
PWD
QUIT
RETR
RMD

abort previous command
specify account (ignored)
allocate storage (vacuously)
append to a file
change to parent of current working directory
change working directory
delete a file
give help information
give list files in a directory ("ls -lg")
make a directory
specify data transfer mode
give name list of files in directory (" 1 s ")
do nothing
specify password
prepare for server-to-server transfer
specify data connection port
print the current working directory
terminate session
retrieve a file
remove a directory

February, 1990
Revision C

ftpd(lM)

RNFR
RNTO
STOR
STOU
STRU
TYPE
USER
XCUP
XCWD
XMKD
XPWD
XRMD

specify rename-from file name
specify rename-to file name
store a file
store a file with a unique name
specify data transfer structure
specify data transfer type
specify user name

ftpd(lM)

change to parent of current working directory
change working directory
make a directory
print the current working directory
remove a directory

The remaining ftp requests specified in Internet
RFC recognized, but not implemented.

The ftp server will abort an active file transfer only when the
ABOR command is preceded by a Telnet "Interrupt Process" (IP)
signal and a Telnet "Synch" signal in the command Telnet
stream, as described in Internet RFC 959.
ftpd interprets file names according to the "globbing" conven­
tions used by csh(1). This allows users to utilize the metacharac­
ters "*? [] {} -" .

ftpdauthenticates users according to three rules.

1) The user name must be in the password data base,
I etc/passwd, and not have a null password. In this case a
password must be provided by the client before any file
operations may be performed.

2) The user name must not appear in the file
I etcl ftpusers.

4) If the user name is "anonymous" or "ftp", an
anonymous ftp account must be present in the password file
(user "ftp"). In this case the user is allowed to log in by
specifying any password (by convention this is given as the
client host's name).

In the last case, ftpd takes special measures to restrict the
client's access privileges. The server performs a chroot(2)
command to the home directory of the "ftp" user. In order that
system security is not breached, it is recommended that the

. " f t p" subtree be constructed with care; the following rules are
recommended.

Pebruary,1990
Revision C

2

ftpd(lM) ftpd(lM)

-ftp)
Make the home directory owned by "ftp" and unwritable
by anyone.

-ftp/bin)
Make this directory owned by the superuser and unwritable
by anyone. The program ls(l) must be present to support
the list commands. This program should have mode 111.

-ftp/etc)
Make this directory owned by the superuser and unwritable
by anyone. The files passwd(4) and group(4) must be
present for the 1 s command to work properly. These files
should be mode 444.

-ftp/pub)
Make this directory mode 777 and owned by "f t p". Users
should then place files which are to be accessible via the
anonymous account in this directory.

SEE ALSO
ftp(1N).

BUGS

3

The anonymous account is inherently dangerous and should be
avoided when possible.

The server must run as the superuser to create sockets with
privileged port numbers. It maintains an effective user ID of the
logged in user, reverting to the superuser only when binding ad­
dresses to sockets. The possible security holes have been exten­
sively scrutinized, but are possibly incomplete.

February, 1990
Revision C

fuser(IM) fuser(IM)

NAME
fuser - identify processes using a file or file structure

SYNOPSIS
/etc/fuser [-] [-k] [-nnamelist] [-u] file . ..

DESCRIPTION
fuser lists the process IDs of the processes using the files
specified as arguments. For block special devices, it lists all
processes using any file on that device. The process ID is fol­
lowed by c, p or r if the process is using the file as its current
directory, the parent of its current directory (only when in use by
the system), or its root directory, respectively.

cancel any flag options currently in force before specifying a
new group of files.

-k send the SIGKILL signal to each process. Only the su-
peruser can tenninate another user's process (see kill(2».

-n specify an alternate namelist U unix is the default).

-u the login name, in parentheses, also follows the process ID.

You can respecify options between groups of files. The new set of
flag options replaces the old set.

The process IDs are printed as a single line on the standard output,
separated by spaces and terminated with a single new line. All
other output is written on standard error.

EXAMPLE
fuser -ku /dev/dsk/cldOsO

allow the superuser to terminate all processes preventing disk
drive one from being unmounted. List the process ID and lo­
gin name of each as it is killed.

fuser -u /etc/passwd
list process IDs and login names of processes that have the
password file open.

fuser -ku /dev/dsk/cldOsO -u /etc/passwd
will do both of the above examples in a single command line.

FILES
/etc/fuser
/unix
/dev/kmem

February, 1990
RevisionC

for namelist
for system image

1

fuser(lM)

/dev/mem
/dev/swap

SEE ALSO

also for system image
for outswapped processes

ps(1), mount(lM), kill(2), signal(3).

BUGS

fuser(lM)

fuser cannot determine what processes are using files on re­
motely mounted file systems.

2 February, 1990
Revision C

fwdload(1M) fwdload(IM)

NAME
fwdload -load an application onto an intelligent peripheral

SYNOPSIS
fwdload [-a] [-v] [-fdev] [-nname]filename

DESCRIPTION
The utility fwdload loads a program onto an intelligent peri­
pheral. The peripheral must have a "forwarder" configured for it
(see forwarder(7)). If the -f flag option is used, the peripheral
is dev; otherwise, standard output will be used.

The -n flag option allows you to specify a string that is a name to
be used instead of filename for the program to download. The de­
fault for this string isfilename. The fwd lkup command reports
this string in its name field. -

The -v flag option provides diagnostics in verbose format.

The parameter filename is the application to download. The file
containing this application must be in COFF format. Before the
download, a reset is issued to the intelligent peripheral.

If the [-a] option is used, there is no reset. Once the load is com­
plete, execution of the downloaded application will begin at the
START indicated by the COFF file.

EXAMPLE
fwdload -f /dev/fwdicp13 at load

will download the AppleTalk® driver onto the default AppleTalk
peripheral in slot 13.

FILES
/etc/fwdload
/etc/startup.d/fwdicp.d/at load
/etc/startup.d/fwdicp.d/tt=load

SEE ALSO
fwd lkup(1M), forwarder(7);
"AppleTalk Programming Guide," inAIUX Network Applicatons
Programming.

February, 1990 1
Revision C

fwd _lkup(1M)

NAME
fwd lkup -look up the application loaded onto an intelligent
periPheral

SYNOPSIS
fwd _lkup [-fdev] [-v]

DESCRIPTION
fwd lkup looks up the name of the application loaded onto an
intelligent peripheral. The peripheral must have a "forwarder"
configured for it. If the - f flag option is used, the peripheral is
dev; otherwise, standard input is used.

The -v flag option provides diagnostics in verbose format.

EXAMPLE
fwd_lkup -f /dev/fwdicp13

will find out what application is running on the ICP card in slot 13.
If the card is currently running AppleTalk®, fwd_lkup prints
the following:

begin start name
o 0 at load
.7fff 0 AVAIL
7fff 0 END

This indicates that at load, the AppleTalk load module, is load­
ed on the ICP, and that it is occupying all 7fff bytes of the ICP's
memory.

FILES
/usr/bin/fwd_lkup

SEE ALSO

1

fwdload(1M), forwarder(7); "AppleTalk Programming
Guide," inAIUX Network Applications Programming.

February, 1990
Revision C

fwtmp(IM) fwtmp(IM)

NAME
fwtmp, wtmpfix - manipulate connect accounting records

SYNOPSIS
/usr/lib/acct/fwtmp[-ic]
/usr / lib/ acct/wtmpfix [files]

DESCRIPTION
fwtmp reads from the standard input and writes to the standard
output, converting binary records of the type found in wtmp to
formatted ASCII records. The ASCII version is useful for editing
bad records with ed(I), or general file maintenance.

-ic input is in ASCII form and output is to be written in
binary form.

wtmpfix examines the standard input or named files in wtmp
format, makes the time/date stamps on the entries consistent, and
writes to the standard output. Using - in place of files indicates
the standard input. If you don't correct the time/date stamp,
acctconl will fault when it encounters certain date-change
records.

Each time the date is set, a pair of date change records is written
to / etc/wtmp. The first record is the old date marked with old
time in the line field and the flag OLD TIME in the type field of
the u tmp . h structure. The second record specifies the new date
and is marked with new time in the line field and the flag
NEW TIME in the type field. wtmpfix uses these records to syn­
chroruze all time stamps in the file.

In addition to correcting time/date stamps, wtmpf ix ensures that
the name field consists solely of alphanumeric characters or
spaces. If it encounters an invalid name, it changes the login
name to INVALID and writes a diagnostic to the standard error.
In this way, wtmpfix reduces the chance that acctconl will
fail when processing connect accounting records.

FILES
/usr/lib/acct/fwtmp
/usr/lib/acct/wtmpfix
/etc/wtmp
/usr/include/utmp.h

February, 1990
Revision C

1

fwtmp(lM) fwtmp(lM)

SEE ALSO

2

acctcom(l), ed(l), acct(lM), acctcms(lM),
acctcon(1M), acctmerg(lM), acctprc(lM),
acctsh(1M), runacct(lM), acct(2), acct(4), utmp(4).

February, 1990
Revision C

getty(1M) getty(1M)

NAME
apm getty, getty - set tenninal type, modes, speed, and
line dIscipline

SYNOPSIS
Jete/getty [-h] [-ttimeout] line [speed [type [linedisc]]]
Jete/getty -cfile
/ete/apm_getty getty-options

DESCRIPTION
getty is a program that is invoked by init(1M) and is the
second process in the series (init-getty-login-shell)
that ultimately connects a user with the A/UX® system. getty
generates a login message field for the entry it is using from
/ete/gettydefs. Then getty reads the user's login name
and invokes the login(l) command with the user's name as ar­
gument. While reading the name, get t y attempts to adapt the
system to the speed and type of tenninal being used.

apm getty provides functionality beyond normal getty for
use with an Apple® Personal Modem. Before it turns over control
to getty, apm getty sends the control sequence to select
auto-answer mode. To switch back to a dialout line, the line con­
taining apm getty in /ete/inittab should be changed to
off insteadof respawn. To activate these changes, use ini t
q as described in ini t(1M).

The name of a tty line in / dev to which get t y is to attach itself
is line. getty uses this string as the name of a file in the / dev
directory to open for reading and writing. Unless getty is in­
voked with the -h flag option, getty forces a hangup on the line
by setting the speed to 0 before setting the speed to the default or
specified speed. The -t flag option plus timeout in seconds,
specifies that get t y should exit if the open on the line succeeds
and no one types anything during the specified number of seconds.
The optional second argument, speed, is a label to a speed and tty
definition in the file /ete/gettydefs. This definition tells
get t y at what speed the interface should initially run, what the
login message should look like, what the initial tty settings are,
and what speed should be tried next should the user indicate that
the speed is inappropriate by typing a break character. The de­
fault speed is 300 baud. The optional third argument, type, is a
character string describing to get ty what type of terminal is con­
nected to the line in question. getty understands the following
types:

February, 1990
Revision C

getty(IM) getty(IM)

2

none Default
vt61 DEC vt61
vt100 DEC vt100
c100 Concept 100

The default terminal is none, that is, any CRT or normal terminal
unknown to the system. Also, for the terminal type to have any
meaning, the virtual terminal handlers must be compiled into the
operating system. They are available, but not compiled, in the de­
fault condition. The optional fourth argument, linedisc, is a char­
acter string describing which line discipline to use in communicat­
ing with the terminal. Again, the hooks for line disciplines are
available in the operating system, but only one is presently avail­
able, the default line discipline LDISCO.

When given no optional arguments, getty sets the speed of the
interface to 300 baud, specifies that raw mode is to be used (awak­
en on every character), that echo is to be suppressed, that either
parity is allowed, that newline characters are to be converted to
return-line feed, and that tab expansion be performed on the stan­
dard output. It types the login message before reading the user's
name one character at a time. If a null character (or framing error)
is received, it is assumed to be the result of the user pushing the
"break" key. This will cause getty to attempt the next speed in
the series. The series that getty tries is determined by what it
finds in /etc/gettydefs.

The user's name is terminated by a newline or RETURN character.
The latter results in the system being set to treat RETURN charac­
ters appropriately (see ioctl(2».

The user's name is scanned to see if it contains any lowercase al­
phabetic characters; if not, and if the name is nonempty, the sys­
tem is told to map any future uppercase characters into the
corresponding lowercase characters.

In addition to the standard A/UX system erase and kill characters
(DELETE and CONTROL-U), getty also understands \b as an
erase. getty sets the standard erase character or kill character to
match.

getty also understands the "standard" ESS protocols for eras­
ing, killing, aborting, and terminating a line. If getty sees the
ESS erase character, ,or kill character, $, or abort character, &,

or the ESS line terminators, / or !, it arranges for this set of char­
acters to be used for these functions.

February, 1990
RevisionC

getty(IM) getty(IM)

Finally, login is called with the user's name as an argument.
Additional arguments may be typed after the login name. These
are passed to login, which places them in the environment. See
login(1).

A check option is provided. When getty is invoked with the -e
option and file, it scans the file as if it were scanning
/ete/gettydefs and prints out the results to the standard out­
put. If there are any unrecognized modes or improperly construct­
ed entries, it reports these. If the entries are correct, it prints out
the values of the various flags. See ioetl(2) to interpret the
values. Note that some values are added to the flags automatical­
ly.

getty attempts to prevent the communication programs eu(1),
tip(1), and uueieo(1M) from interfering with its operation by
creating a lock file in /usr/spool/uuep. The lock file is not
created by getty until input is present, so that these programs
may attempt to access line while getty is running.

FILES
fete/getty
/ete/gettydefs
fete/issue
/usr/ spool/uuep/LCK .. line

SEE ALSO
et(1C), init(IM), login(I), ioetl(2), gettydefs(4),
inittab(4), tty(7).

BUGS
Although getty understands simple single-character quoting
conventions, it is not possible to quote the special control charac­
ters that getty uses to determine when the end of the line has
been reached, which protocol is being used, and what the erase
character is. Therefore, it is not possible to login via get t y and
type a =It, @, /, !, ,DELETE, CONTROL-U, CONfROL-D, or & as
part of your login name or argument. They are always interpreted
as having their special meaning, as described earlier.

February, 1990 3
RevisionC

grpck(lM) grpck(lM)

See pwck(lM)

1 February, 1990
Revision C

ifconfig(1M) ifconfig(IM)

NAME
ifconfig - configure network interface parameters

SYNOPSIS
/ etc/ ifconfig interface [address [dest-address]]
[parameter . ..]

/ etc/ ifconfig interface [protocollamily]

DESCRIPTION
ifconfig is used to assign an address to a network interface or
configure network interface parameters. ifconfig must be used
at boot time to define the network address of each interface
present on a machine; it may also be used at a later time to
redefine an interface's address or other operating parameters. The
interface parameter is a string of the form name unit, for example,
aeO.

A DARPA-Internet address is either a host name present in the
host name data base, hosts(4), or a DARPA Internet address ex­
pressed in the Internet standard "dot notation."

The following parameters may be set with ifconfig:

up Mark an interface "up." This may be used to
enable an interface after an ifconfig down.
It happens automatically when setting the first
address on an interface. If the interface was
reset when previously marked down, the
hardware will be reinitialized.

down

trailers

February, 1990
RevisionC

Mark an interface "down." When an interface
is marked "down," the system does not at­
tempt to transmit messages through that inter­
face. If possible, the interface is reset to dis­
able reception as well. This action does not au­
tomatically disable routes using the interface.

Request the use of a "trailer" link level encap­
sulation when sending (default). If a network
interface supports trailers, the system will,
when possible, encapsulate outgoing messages
in a manner which minimizes the number of
memory to memory copy operations performed
by the receiver. On networks that support the
Address Resolution Protocol (see arp(5P);
currently, only 10 Mb/s Ethernet), this flag indi-

1

ifconfig(lM) ifconfig(1M)

cates that the system should request that other
systems use trailers when sending to this host.
Similarly, trailer encapsulations will be sent to
other hosts that have made such requests.
Currently used by Internet protocols only.

-trailers Disable the use of a "trailer" link level encap­
sulation.

arp Enable the use of the Address Resolution Proto­
col in mapping between network level ad­
dresses and link level addresses (default). This
is currently implemented for mapping between
DARPA Internet addresses and 10Mb/s Ether­
net addresses.

-arp Disable the use of the Address Resolution Pro­
tocol.

metric n Set the routing metric of the interface to n, (the
default is 0). The routing metric is used by the
routing protocol (routed(lM)). Higher
metrics have the effect of making a route less
favorable; metrics are counted as addition hops
to the destination network or host.

debug Enable driver dependent debugging code; usu­
ally, this turns on extra console error logging.

-debug Disable driver dependent debugging code.

netmask mask (Inet only) Specify how much of the address to
reserve for subdividing networks into subnet­
works. The mask includes the network part of
the local address and the subnet part, which is
taken from the host field of the address. The
mask can be specified as a single hexadecimal
number with a leading Ox, with a dot-notation
Internet address, or with a pseudo-network
name listed in the network table
networks(4N}. The mask contains 1 's for
the bit positions in the 32-bit address which are
to be used for the network and subnet parts, and
O's for the host part. The mask should contain
at least the standard network portion, and the
subnet field should be contiguous with the net-

2 February, 1990
RevisionC

ifconfig(IM)

dstaddr

broadcast

ifconfig(IM)

work portion.

Specify the address of the correspondent on the
other end of a point-to-point link.

(Inet only) Specify the address to use to
represent broadcasts to the network. The de-
fault broadcast address is the address with a
host part of aliI's.

ifconfig displays the current configuration for a network inter­
face when no optional parameters are supplied. If a protocol fam­
ily is specified, ifconfig will report only the details specific to
that protocol family.

Only the superuser may modify the configuration of a network in­
terface.

DIAGNOSTICS
Messages indicating the specified interface does not exit, the re­
quested address is unknown, or the user is not privileged and tried
to alter an interface's configuration.

FILES
/etc/ifconfig

SEE ALSO
netstat(I), rc(lM), intro(5).

February, 1990
Revision C

3

inetd(1M) inetd(IM)

NAME
inetd - Internet services daemon

SYNOPSIS
/ etc/ inetd [-d]

DESCRIPfION

1

inetd is the Internet super-server which invokes all Internet
server processes as needed. Connection-oriented services are in­
voked each time a connection is made, by creating a process. This
process is passed the connection as file descriptor 0 and an argu­
ment of the form sourcehost. source port where source host is hex
and source port is decimal.

Datagram oriented services are invoked when a datagram arrives;
a process is created and passed the connection as file descriptor O.
inetd will look at the socket where datagrams arrive again only
after this process completes. The paradigms for such processes
are either to read off the incoming datagram and then fork and
exit, or to process the arriving datagram and then time out.

inetd consults servers(4) when it is invoked, and supports
whatever services are in that file.

An rpc server can be started from inetd. The only differences
from the usual code are that svcudp_create should be called
as

transp = scvudp_create(O)

since inet passes a socket file as descriptor 0, and
svc_register should be called as:

svc_register(PROGNUM, VERSNUM, service, transp, 0)

with the final flag as 0, since the program will already have been
registered by inetd. If you want to exit from the server process
and return control to inet, you must explicitly exit since
s cv run never returns.

The format of entries in / etc/ servers for rpc services is:

rpc udp server-program program-number version-number

where server-program is the C code implementing the server, and
program-number and version-number are the program and version
numbers, respectively, of the service. The keyword udp can be
replaced by tcp for tcp-based services.

February, 1990
RevisionC

inetd(lM) inetd(lM)

IT the same program handles multiple versions, the version
number can be specified as a range:

rpe udp /usr/ete/rstatd 100001 1-2

FLAG OPTIONS
The following flag option is interpreted by inetd:

-d Specifies that debugging traces are to be turned on for
connection-oriented (TCP) services.

FILES
fete/servers

SEE ALSO

list of Internet server processes

ftpd(lM), rexeed(1M), rlogind(lM), remshd(IM),
talkd(IM), telnetd(1M), tftpd(IM), servers(4).

BUGS
There is no provision for selectively invoking TCP debugging
packet tracing per-service.

You should reread the / ete/ servers file on receipt of a
SIGHUP signal. The / ete/ servers file can have no more
than 26 lines.

February, 1990
RevisionC

2

init(IM) init(IM)

NAME
ini t, telini t - process control initialization

SYNOPSIS
/etc/init[0123456SsQqabc]

DESCRIPTION

1

ini t is a general process spawner. Its primary role is to create
processes based on the line entries in /etc/inittab (see in­
it tab(4)). This file usually instructs ini t to spawn terminal
listeners (see getty(IM)) on each serial line available for access
to the system. It can also manage the system's autonomous
processes, often called daemons.

For interchangeable use, telini t is linked to ini t (see In(I)).
Normally, the permissions are set so that telini t and ini t can
only be run by the superuser or a member of the group sys.

Certain single-letter arguments for ini t are called run levels, and
others are called directives.

Run level
can be a number between one and six or the letters s or S.
ini t places the system in the specified run level. Using s
or S causes ini t to change the virtual system teletype,
/ dev / syscon, to the terminal from which the command
was executed, as well as to establish the corresponding run
level.

Directive
can be a, b, c, Q, or q. The Q or q directive causes ini t to
re-examine the /etc/inittab file and honor any changes
that apply to the current run level. For example, a getty pro­
cess that is changed from respawn to off in
/etc/inittab will be killed when init q is entered.
The a, b, or c directive causes ini t to create or remove
only those processes with the corresponding letter in their run
level field in /etc/inittab. Affected processes may be
switched on or off as specified in the action field (see ini t­
tab(4)).

A run level can be viewed as a software configuration that must, at
minimum, consist of the processes specified in / etc/ ini t tab
for that run level. init can be in one of eight run levels, 0
through 6, S or s.

February, 1990
Revision C

init(IM) init(IM)

Besides using ini t to change the run level, it can be used to help
switch various processes on and off in tandem (see directives, pre­
viously described).

An ini t process is run as part of NUX initialization, and that
copy of the program must run continuously. It maintains the sys­
tem state. By invoking the ini t program again, at the command
line, the original copy of ini t can be instructed to change the
system's run level. The newly requested copy of ini t sends the
appropriate signals to the one created at system startup.

Following is a description of the role ini t plays in the startup
process, and gives examples of the special processing ini t per­
forms when there is a change in run level or in the status of a pro­
cess (termination).

First init looks for an entry in /etc/inittab in which in­
itdefault appears in the action field (see inittab(4». If
there is one, ini t uses the run level specified in that entry as the
initial run level to enter. If this entry is not in ini t tab or in­
it tab is not found, ini t requests that the user enter a run level
from the virtual system console, /dev/syscon. If an s (s) is
entered, ini t goes into the single-user level. This is the only run
level that doesn't require the existence of a properly formatted
inittab file. If /etc/inittab doesn't exist, then, by de­
fault, the only legal run level that ini t can enter is the single­
user level. In the single-user level, the virtual console terminal
/ dev / syscon is opened for reading and writing and the com­
mand /bin/ su is invoked immediately. To exit from the
single-user run level, one of two flag options can be elected. First,
if the shell is terminated (via an end-of-file), ini t reprompts for
a new run level. Second, the ini t command can signal ini t
and force it to change the run level of the system.

When attempting to boot the system, failure of ini t to prompt
for a new run level may be due to the fact that the device
/ dev / syscon is linked to a device other than the physical sys­
tem teletype (ldev/systty). If this occurs, init can be
forced to relink / dev / syscon by typing a delete on the system
teletype which is co-located with the processor.

When ini t prompts for the new run level, the operator may enter
only one of the digits 0 through 6 or the letters S or s. If S is en­
tered ini t operates as previously described in single-user mode
with the additional result that / dev / syscon is linked to the

February, 1990
Revision C

2

init(1M) init(1M)

3

user's terminal line, thus making it the virtual system console. A
message is generated on the physical console, /dev/systty,
saying where the virtual terminal has been relocated.

When ini t comes up initially and whenever it switches out of
single-user state to normal run states, it sets the ioctl(2) states
of the virtual console, / dev / syscon, to those modes saved in
the file /etc/ioctl. syscon. This file is written by init
whenever single-user mode is entered. If this file does not exist
when ini t wants to read it, a warning is printed and default set­
tings are assumed.

If a 0 through 6 is entered, ini t enters the corresponding run
level. Any other input will be rejected and the user will be re­
prompted. If this is the first time ini t has entered a run level
other than single-user, init first scans inittab for special en­
tries of the type boot and bootwai t. These entries are per­
formed, provided that the run level entered matches that of the en­
try before any normal processing of ini t tab takes place. In this
way, any special initialization of the operating system, such as
mounting file systems, can take place before users are allowed
onto the system. The ini t tab file is scanned to find all entries
that are to be processed for that run level.

Run level 2 is usually defined by the user to contain all of the ter­
minal processes and daemons that are spawned in the multiuser
environment.

In a multiuser environment, the inittab file is usually set up so
that ini t will create a process for each terminal on the system.

For terminal processes, the shell will ultimately terminate because
an end-of-file was either typed explicitly or genemted as a result
of hanging up. When ini t receives a child-death signal, report­
ing the death of a process it has spawned, it records the death and
the cause of death in / etc/utmp, and in / etc/wtmp if it exists
(see who(1». A history of the processes spawned is kept in
/ etc/wtmp if such a file exists.

To spawn each process in the ini ttab file, ini t reads each en­
try and forks a child process for each entry that should be
respawned. After it has spawned all of the processes specified by
the ini t tab file, ini t waits for one of its descendant processes
to die, for a power-failure signal, or until it is signaled by ini t to
change the system's run level. When one of these conditions oc­
curs, init re-examines the inittab file. New entries can be

February, 1990
Revision C

init(lM) init(1M)

added to the ini t tab file at any time; however, ini t still waits
for one of these conditions. To process the altered or new entries
in /etc/inittab immediately, use the command init Q or
init q to awaken init and make it re-examine the inittab
file.

If ini t receives a power-failure signal (SIGPWR) and is not in
single-user mode, it scans inittab for special powerfail en­
tries. These entries are invoked (if the run levels permit) before
any further processing takes place. In this way, ini t can per­
form various cleanup and recording functions whenever the
operating system experiences a power failure.

When ini t is requested to change run levels, ini t sends the
warning signal (S I GTERM) to all processes that are undefined in
the target run level. ini t waits 20 seconds before forcibly ter­
minating these processes via the kill signal (SIGKILL). When
the q or Q flag option is specified ini t removes processes that
are currently running but which are set to be 0 f f in
/ etc/ ini t tab for the current run level.

FILES
/etc/init
/etc/init
/etc/inittab
/etc/utmp
/etc/wtmp
/etc/ioctl.syscon
/dev/syscon
/dev/systty

SEE ALSO
getty(lM), login(1), sh(l), who(l), kill(2), inittab(4),
ioctl. syscon(4), utmp(4).
"System Startup and Shutdown" in A/UX Local System Adminis­
tration.

DIAGNOSTICS
If ini t finds that it is continuously respawning an entry from
/ etc / ini t tab more than 10 times in 2 minutes, it assumes that
there is an error in the command string and will generate an error
message on the system console. ini t refuses to respawn this en­
try until either 5 minutes has elapsed or it receives a signal from a
user ini t. This prevents ini t from monopolizing system
resources when someone makes a typographical error in ini t-

February, 1990
Revision C

4

init(IM) init(IM)

tab file or a program is removed that is referenced in ini t tab.

5 February, 1990
RevisionC

install (1M) install(IM)

NAME
install - install files in specified directories

SYNOPSIS
/ ete/ install [-e dira] [-f dirb] [-g group] [-i] [-m mode]
[-n dire] [-0] [-s] [-u user] file [dirx ...]

DESCRIPTION
install is a command most commonly used in "makefiles"
(see make(l)) to insta1lfile as an updated target file in a specific
place within a file system. Eachfile is installed by copying it into
the appropriate directory, thereby retaining the mode and owner of
the original command. The program prints messages telling the
user exactly what files it is replacing or creating and where they
are going.

If no flag options or directories (dirx ...) are given, install
searches a set of default directories (lbin, /usr/bin, fete,
/ lib, and /usr / lib, in that order) for a file with the same
name asfile. When the first occurrence is found, install issues
a message saying that it is overwriting that file with file, and then
it proceeds to do so. If the file is not found, the program states this
and exits without further action.

If one or more directories (dirx ...) are specified after file, those
directories are searched before the directories specified in the de­
fault list.

FLAG OPTIONS
The following flag options are interpreted by install:

-e dira Install a new command (file) in the directory specified
by dira, only if a file with the same name is not found.
If it is found, install issues a message saying that
file already exists, and exits without overwriting it. This
flag option may be used alone or with the -s flag op­
tion.

-f dirb Force file to be installed in given directory, whether or
not a file by the same name already exists. If the file al­
ready exists, the mode and ownership of the file is that
of the already existing file. This flag option may be
used alone or with the -0 or -s flag option.

-gOgroup
Use the specified group ID instead of the default, bin,
when setting the ownership of files that do not already

February, 1990
Revision C

1

install{lM) install (1M)

exist

-i Ignore the default directory list, searching only through
the given directories (dirx .. .). This flag option may be
used alone or with any other flag options other than -e
and-f.

-mOmode
Use the specified mode instead of the default, 775,
when setting the mode of files that do not already exist.

-n dire Put file in the directory specified in dire if file is not
found in any of the searched directories. This flag op­
tion may be used alone or with any other flag options
other than -e and -f.

-0 If file is found, save the "found" file by copying it to
OLDfile in the directory in which it was found. This flag
option is useful when installing a normally text-busy file
such as /bin/sh or fete/getty, where the existing
file cannot be removed. This flag option may be used
alone or with any other flag options other than -e.

-s Suppress the printing of messages other than error mes­
sages. This flag option may be used alone or with any
other flag options.

-u user Use the specified user ID instead of the default, bin,
when setting the ownership of files that do not already
exist

FILES
fete/install

SEE ALSO
epset(1M), make(1), ehown(1), ehgrp(l), ehmod(1).

2 February, 1990
RevisionC

kconfig(1M) kconfig(IM)

NAME
kconfig - tune kernel parameters for work-load optimization

SYNOPSIS
/ etc/kconfig [-a [-v] [-V]] [-nnamelist]

DESCRIPTION
kconfig manipulates an A/UX® kernel code file for changing
system parameters.

Note: It is not recommended that this utility be used un­
less you know exactly what you are doing. Incorrect use
can cause system failures.

kconfig can be used to either list or change the system parame­
ters listed later in the section "System Parameters."

Note that kconfig does not change parameters of the running
kernel, just the image on the disk. You must then run
shutdown(IM) and reboot(IM) for the changes to be effec­
tive.

FLAG OPTIONS
kconfig interprets the following flag options:

-a

-v

-v

-n name list

List the current values of the parameters in the
kernel object file namelist.

Use with the -a flag option to produce verbose
(commented) output.

Use with the -a flag option to print the current
version of the kernel object file namelist.

Specify which kernel object file is being
modified (the default is / unix).

If -a is used, kconfig displays the parameters and exits. If-a
is not used, standard input is read for a list of changes. You can
specify one change per input line of the form

PARAM value
PARAM += value
P ARAM -= value

where P ARAM is one of the parameter names (listed later in the
section "System Parameters") and the value is either a decimal
constant or a hexadecimal constant preceded by Ox.

February, 1990
Revision C

1

kconfig(lM) kconfig(lM)

2

If the = form is used, the parameter is given the value specified. If
the -= form is used, the parameter is decreased by the value
given. If the += form is used, the parameter is increased by the
value. If the value is not within a system-defined maximum and
minimum range for the parameter, an error occurs and the kernel
is not changed.

SYSTEM PARAMETERS
The following system parameters are recognized by kconfig:

Note: Not all of these parameters will necessarily be sup­
ported in future releases of the operating system.

NBUF

SBUFSIZE

Specify the number of disk I/O buffers to al­
locate. These form a data cache for informa­
tion read or written to file systems. Each
buffer consists of SBUFSIZE data areas and
about three dozen bytes of header informa­
tion. Increasing the number of buffers im­
proves the "cache hit ratio" . on the buffer
pool, but at the expense of available memory
for processes. The number of system buffers
normally ranges from 100 to 1500. One
hundred buffers should be used for systems
with 2 megabytes of total memory. Probably
not more than 750 buffers should be used on
systems with 4 MB of memory. Increasing
the number of buffers reduces the memory
available for applications and may cause
more paging to occur. Systems with a single
user might conceivably use more buffers
than systems that typically have numerous
memory-intensive applications running. The
default value of NBUF is 100. If desired, the
system dynamically calculates the number of
buffers. If NBUF is set to 0, 10 percent of
free memory at boot time is allocated to I/O
buffers.

Determine the size of system I/O logical
block size on disk devices. The size is
configurable. Most System V file systems
(SVFS) use a 1 kilobyte (KB) block size.
The SBUFSIZE parameter determines the

February, 1990
Revision C

kconfig(1M)

NPBUF

NFILE

NINODE

NSPTMAP

February, 1990
Revision C

kconfig(IM)

size of in-core buffers allocated for the
buffer cache. The number must be an even
multiple of 512 bytes and should be large
enough to accept the largest block size of all
active file systems. When the system buffer
size is increased, the total number of buffers
should be decreased, assuming the same
amount of memory is used for the buffer
cache.

Specify how many physical input/output
buffer headers to allocate. One header is
needed for each simultaneous read or write
of a "character-special" disk or tape device,
or for each concurrent swap I/O. The default
value is 20.

Determines the size of the system file-table
pool. Each entry represents an open file in
use by some process. When no space is
available in the file table, the message
"file: table is full" is printed on
the system console. The size is generally
between 100 (the default) and 400. NFILE
is often equal to the NINODE parameter.

Set the size of the system inode table. Each
table entry represents an in-core inode being
used for an open file, an open working direc­
tory, or a mount point. For systems using a
network file system (NFS) to access remote
file systems, only locally open files consume
inodes. Normally the NINODE parameter is
greater than or equal to the NFILE parame­
ter. Generally the range is from 100 (the de­
fault) to 400 inodes. When all inodes in the
system inode table are used, the message
"inode: table is full" is printed.

Allocate table entries that are used to map
the system page table entries. The default
value is 75. If the message
"sptreserve: No kernel virtual
space" is printed, the system has exhaust­
ed the map.

3

kconfig(lM)

NCALL

NMOUNT

NFLOCK

NREGION

NPROC

4

kconfig(lM)

Specify the size of the timeout table. Each
entry may be used by device-driver software
to arrange for a function to be called at a
later time. The default value is 50. If many
add-on drives, such as for NuBus™ peri­
pherals, are added to the system, this value
might require an increase. If the timeout
table is exhausted, the message "timeout
table overflow" is printed, and the
system halts execution.

Specify the size of the SVFS mount table.
The parameter does not affect the number of
remotely mounted network file systems al­
lowed. If numerous disk devices containing
many file-system partitions are present, the
mount table may need to be increased. The
default size is 10.

Specify the number of system-wide lock­
ing(2) file locks. Each area of a locked file
requires one of these table entries. If the
table is exhausted, the error EDEADLOCK is
returned to the application that made the
lock request. The default number of locks is
200.

Defines the number of memory regions
available to all processes in the system. A
typical process has a memory region for
data, a memory region for stack, and a
memory region for program text, but this re­
gion would be shared between all processes
executing the application. If the region table
is exhausted, the message "Region
table overflow" is printed on the sys­
tem console. The default value is 200.

Specify the total number of processes in the
system. In general, each executing com­
mand, application, or system daemon is a
process. Each user of the system, or each
active layer or window generally uses
between 2 and 8 simultaneous processes.
When no processes are available, the mes-

February, 1990
Revision C

kconfig(IM)

NCLIST

MAXUP

VHNDFRAC

February, 1990
Revision C

kconfig(1M)

sage "proc: table is full" is
printed at the system console. By default,
NPROC is 50.

Specify the number of system command lists
(CLIS]). A CLIST is a memory area used
by driver software for terminals, built-in
modems, or serial printer connections. Five
to 10 CLISTs are required by each active
terminal. When no CLISTs are available, in­
coming characters are lost Each CLIST re­
quires 64 bytes of data, and a 12-byte
header. The console and some optional seri­
al cards use the s t re ams interface and do
not require CLISTs. The default number of
CLISTs is 200.

Determines the maximum number of con­
current processes for each user ID. The su­
peruser is exempt from this restriction. This
limit is based on user ID, not on the login
terminal. If ten people are logged in using a
single user ID, the limit could be reached
quickly. Normally NPROC is at least 10 per­
cent larger than MAXUP. The default value
of MAXUP is currently 25.

The virtual memory system depends on the
activity of the paging daemon vhand to free
memory by paging unused memory to the
swap-disk device. The algorithm writes out
to disk pages that have not been used for
some time. If the system is not active, there
is plenty of free memory and no work for
vhand. VHNDFRAC and other tuning
parameters allow the adventurous system ad­
ministrator to fine-tune the performance.

The vhand fraction is used to determine the
initial value of the system variable VHANDL.
If free memory falls below VHANDL, the
paging daemon, vhand, is awakened to be­
gin aging and monitoring the resident set of
virtual memory pages. At system startup
time, VHAND L is set to

5

kconfig(IM)

MAXPMEM

NMBUFS

NPTY

MAXCORE

6

kconfig(IM)

vhandl=MAX(maxmem/VHANDFRAC,GETPGSHI}

where maxmem is the available free memory
at startup time and GETPGSHI is the free­
memory high-water mark, described later.
Nonnally VHANDFRAC is set to 16.

Specify the maximum physical memory to
use. If this is set at 0, the system uses all
available physical memory. It is recom­
mended this value be 0, unless you are test­
ing alternate memory configurations.

Allocate a number of buffers for networking.
Each buffer requires 256 bytes, of which 240
are available for data. As few as 100
mbufs may be used for basic networking.
When NFS is used on a system, the number
should be increased. As a guide, each NFS
daemon may transfer 8 KB of data. Allocat­
ing (8192*n daemons)fl40 provides a start­
ing point in -the calculation. The command
netstat -m may be used to detennine the
number of mbuf s in use. If the message
"m expand returning 0" is seen fre­
quently or if the system halts after displaying
the message "panic: out of mbufs",
the number of mbufs should be increased.
By default, 500 mbufs are allocated.

Detennines the total number of possible
pseudo tty devices (that is, / dev /pty*).
This default number, which is also the max­
imum potential number of devices, is 16.
Special files must still be created in the
/ dev directory for ptys to be used. If
more than the allocated number of pt ys are
created, the error code "No such dev­
ice or address" is returned by the
open(2) of any of the unallocated device
files.

Set the space available for use by the
memory allocation of the kernel from its
internal heap. Most data structures used to

February, 1990
Revision C

kconfig(1M)

MAXHEADER

NSTREAM

NQUEUE

kconfig(lM)

access remote files via NFS are allocated
from this pool, as is space used by generic
disk devices and the system's name-lookup
code. If the message "panic:
kmem alloe" appears and the system
halts, the value of MAXCORE should be in­
creased. The default value is 128 KB.

Limit the number of allocations possible
from the kernel's internal heap. If the mes­
sage "panic: getfreehdr" is seen,
this allocation should be increased. The de­
fault value MAXHEADER is 2048.

Determine the maximum number of stream
heads possible in the system. The console,
AppleTalk®, and the shell layering by the
console are examples of streams. The
number of streams required might range
from 8 to 48. The default number of stream
allocated is 32.

Define the maximum number of stream
queues. Each stream head, driver, and
module pushed onto a stream creates two
queues. Typically this parameter is set to 8
times the number of stream heads. The de­
fault number of queues is 256.

The allocation of stream blocks determines the availability of
buffer space used by stream devices. The optimal allocation
depends on the types of devices present in the system. It is ex­
pected that the installation scripts for devices using the streams
mechanism will include the necessary commands to increase the
number of blocks allocated. If too few blocks of the size required
by a driver are present, the system may lose input characters.

NBLK4 096 Allocate a number of 4 KB stream blocks. The
default is O.

NBLK2048

NBLK1024

February, 1990
Revision C

Allocate a number of 2 KB stream blocks. The
default is 20.

Allocate a number of 1 KB stream blocks. The
default is 12.

7

kconfig(IM)

NBLK512

NBLK256

NBLK128

NBLK64

NBLK16

NBLK4

SLICE

GETPGSLOW

GETPGSHI

8

kconfig(IM)

Allocate a number of 512-byte stream blocks.
The default is 8.

Allocate a number of 256-byte stream blocks.
The default is 16.

Allocate a number of 128-byte stream blocks.
The default is 64.

Allocate a number of 64-byte stream blocks.
The default is 256.

Allocate a number of 16-byte stream blocks.
The default is 128.

Allocate a number of 4-byte stream blocks. The
default is 512. Keyboard and tty input uses this
resource.

Specify the maximum time slice available to a
process before it is considered for rescheduling.
At the end of the time slice, the active process is
suspended, and the system searches for a pro­
cess with a higher CPU priority. If no higher­
priority process exists, the previous process is
given another slice. The default time slice is 60.
The units are "ticks," and there are 60 ticks in a
second.

Specifies the get-pages low limit which is the
free-memory low-water mark for the vhand
daemon. When this number is reached, vhand
becomes active and starts stealing pages from
active processes. The default value is 20. In­
crease the value to make the daemon more ac­
tive. The value must be greater than 0 and less
than GETPGSHI.

Specify the get-pages high limit which is the
free-memory high-water mark for the vhand
daemon. When this number is exceeded, the
system stops stealing pages from active
processes. The default value is set to 30.
GETPGSHI should be greater than GETPGSLOW
and less than about one-fourth of the total avail­
able memory.

February, 1990
RevisionC

kconfig(1M)

GETPGSMSK

VHANDR

MAXSC

MAXFC

MAXUMEM

February, 1990
RevisionC

kconfig(1M)

Specify, when used by vhand which pages to
steal. The default value of GETPGSMSK (the
get-pages mask) is Ox408. It may be modified,
but most changes are more educational than use­
ful. Values in this parameter correspond to bits
in the page-table entries. Each masked bit in the
page-table entry must be 0 in order for the page
to be taken by vhand. The current setting is

PG_NDREF lPG_REF

(defined in /usr/include/sys/page.h).
By including the modified bit (PG M), vhand
would not steal any pages with the modified bit
on.

Specify in seconds the maximum rate at which
vhand may run if free memory is less than
VHANDL, as explained earlier for VHNDFRAC.
The default value is 5. Increase the value to
make the daemon less active. The value should
be between 1 and 10.

Specify the maximum number of pages that may
be written to the swap device in a single opera­
tion. The default value is 64. Increasing this
number increases the I/O overhead spent in
swapping, but decreasing the value may reduce
the amount of free memory available when a
page fault occurs.

Specify the maximum number of pages that may
be placed on the free list at one time. The de­
fault value is 100. Increasing the number may
allow for faster handling of page faults when a
process needs more memory, but it may also
reduce the working set of applications so that
page faults occur more frequently.

Determine the maximum user virtual address
space in pages. This number may range from
about 30 to Ox2()()()(). The default value is
Ox4()()()(), which eliminates all checking. Small
values of MAXUMEM may make software that is
normally taken for granted unusable.

9

kconfig(IM)

10

FLCKREC

FLCKFIL

CDLIMIT

CMASK

ROOTDEV

SWAPDEV

PIPEDEV

DUMPDEV

SWAPLO

kconfig(IM)

Specify the number of flock(2) lock struc­
tures. When this size is exceeded, the error
ENOSPC is returned to the requesting program.
The default value is 200.

Specify the number of flock inode structures.
When this size is exceeded, the error EMF I LE is
returned to the requesting program. The default
value is 50.

Set the process ulimi t on file size. Only this
number of 512-byte blocks may be written to
any file by any process owned by any user. The
default value is 16 million blocks (Oxl000000).

Determine the system wide default file-creation
mask. Generally, the value of CMASK is over­
ridden by the uma s k directive of one's chosen
shell. The default value is o.
Determine the disk device containing the root
file system. This must be a device number as
used internally by the kernel. The device major
number is in the upper byte, and the minor
number is in the lower byte. If the value is
Oxffff, then the value passed from the NUX
StartupShell (see StartupShell(8)) booter is
used.

Specify the swap disk device. The specification
is the same format as ROOTDEV. If set to Oxffff,
the value passed from the NUX StartupShell
booter is used.

Determine the disk device for temporary pipe­
file space. The· specification is the same format
as ROOTDEV. If set to Oxffff, the value passed
from the A/UX StartupShell booter is used.

Currently unused by the system.

Specify the starting disk address of the swap
area to determines the number of 512-byte
blocks to skip at the beginning of the swap parti­
tion. This would be done if these blocks were to
be used for some other purpose; however, this
result may also be achieved by repartitioning the

February, 1990
RevisionC

kconfig(IM)

SWAPCNT

MINARMEM

MINASMEM

kconfig(IM)

disk. The default value is O.

Specify the size of the swap area, which is a
number of 512-byte blocks. The system warns
you if it is running short of swap space. If
SWAPCNT is 0, the size of the swap area is set to
the size of the swap partition of the root device.
To adjust swap space, both kconfig and the
dp(IM) (disk partitioning) utility must be used.
The default value is O.

Set the minimum number of pages of physical
(' 'resident' ') memory reserved for user text and
data segments in order to avoid deadlock. The
default value is 10, and values might range from
10 to 40.

Define the minimum number of pages of system
(swap + resident) memory reserved for system
purposes and therefore unavailable for the text
and data segments of user processes. The de­
fault value is 10. Normally MINASMEM is
greater than MINARMEM.

FILES
/etc/kconfig
/unix

SEE ALSO
dp(IM), reboot(lM), shutdown(lM), swap(1M), flock(2),
locking(2), open(2), pty(7), StartupShell(8).

Building A/UX Device Drivers, A/UX Local System Administra­
tion, A/UX Network System Administration, A/UX Network Appli­
cations Programming.

February,1990 11
Revision C

keyset(IM) keyset(1M)

NAME
keyset - set console keyboard mapping

SYNOPSIS
/ etc/keyset [keyboard] [country]

DESCRIPTION
keyset sets the current console keyboard mapping to the type of
keyboard given by keyboard and country. Currently, three dif­
ferent keyboard types are supported by the console driver. They
are ADB extended, ADB ISO, and ADB standard. They are given
to keyset as one of the following arguments: adbext, ad­
biso, or adbstd. If this parameter is not specified, keyset
reads the file / dev / kmem to find out what type of keyboard was
in use when the system was booted. The different country types
currently supported are Australia, Bri tian, Denmark,
Dutch, Finland,Flemish, FrCanada, France, Germany,
Greecel, Greece2, Iceland, Italy, Norway, Spain,
Sweden, SwissFrench, SwissGerman, Turkey,USA,and
Yugoslavia. If this parameter is not specified, keyset reads
the default information stored in the Macintosh system file
/usr/lib/mac/System for the country parameter.

EXAMPLES
To set the keyboard to ADB standard in the United States, use the
command: /etc/keyset adbstd USA

FILES
/usr/lib/mac/System

DIAGNOSTICS

1

The exit status is 0 if everything went OK. A status of 1 indicates
a usage error or an error while setting the new keyboard map.

February, 1990
RevisionC

killall (1M) killall(lM)

NAME
killall- kill all active processes

SYNOPSIS
/ ete/killall [-n namelist] [signal]

DESCRIPTION
killall is a procedure used by / ete/ shutdown to kill all
active processes not directly related to the shutdown procedure.

If you use the -n name list option, the argument will be taken as
the name of an alternate name list file in place of / unix.

killall is used chiefly to terminate all processes with open files
so that the mounted file systems will be unbusied and can be un­
mounted.

killall sends signal (see kill(1» to all remaining processes
not belonging to the above group of exclusions. If no signal is
specified, a default of 9 is used.

FILES
/ete/killall
fete/shutdown

SEE ALSO
fuser(lM), kill(l), ps(1), shutdown(1M), signal(3).

February, 1990
Revision C

1

labelit(IM)

See volcopy(IM)

1

labelit(IM)

February, 1990
RevisionC

lastlogin(1M)

February, 1990
Revision C

lastlogin(IM)

See acct sh(lM)

1

line_sane(IM) line_sane(IM)

NAME
line_sane - push streams line disciplines

SYNOPSIS
/etc/line_sane [fiides]

DESCRIPTION
line sane pushes the streams line discipline "line" onto the
stream-referenced by the open file descriptor fildes (an integer). If
fildes does not reference a stream, or it references a stream that al­
ready has a line discipline pushed onto it, no line discipline is
pushed. If the fildes argument is not specified, the default is O. In
addition, if output processing is not currently being done onfildes,
the following flags are turned on:

BRKINT, IGNPAR, ISTRIP,IXON, IX­
ANY, ICRNL.

c_oflag

c_lflag

FILES

OPOST, ONLCR, TAB3.

ISIG, I CANON, ECHO, ECHOK.

/etc/line_sane

SEE ALSO
lineyush(3), console(7), streams(7), termio(7).

1 February, 1990
Revision C

lockd(IM) lockd(IM)

NAME
lockd - process network lock daemon

SYNOPSIS
/ etc/ rpc .lockd [-t timeout] [-g grace period]

DESCRIPTION
lockd is a network lock daemon that processes lock requests that
are sent either locally by the kernel or remotely by another lock
daemon. lockd forwards lock requests for remote data to the
lock daemon at the server site through the RPC/XDR package.
lockd then requests the status monitor daemon, statd(1M), for
monitor service. The reply to the lock request is not sent to the
kernel until the status monitor daemon and the lock daemon at the
server site replies.

If either the status monitor daemon or the lock daemon at the
server site is unavailable, the reply to a lock request for remote
data is delayed until all daemons become available.

When a server recovers, it waits for a grace period for each
lockd at a client site to submit reclaim requests. Each lockd at
a client site, on the other hand, is notified by the s tat d of the
server recovery and promptly resubmits a previously granted lock
request. If lockd fails to secure a previously granted lock at the
server site, lockd sends SIGTERM to a process.

FLAG OPTIONS
The following flag options are interpreted by lockd:

-t timeout Use timeout (seconds) as the interval instead of the
default value (15 seconds) to retransmit a lock request
to the remote server.

-g grace period

SEE ALSO

Use grace period (seconds) as the grace period dura­
tion instead of the default value (45 seconds).

fcntl(2), lockf(3), signal(3), statd(IM).

February, 1990
RevisionC

I

Login(IM) Login(IM)

NAME
Login - present a Macintosh® login dialog box when called by
init

SYNOPSIS
Login [-- [-r] [-g]]

DESCRIPTION

1

Login presents a Macintosh dialog box allowing a user to log
into the system at the Macintosh display and optionally change his
or her password. Additionally, it allows you to select which type
of session to log in to (for example, NUX Finder or Console
Emulator). Login replaces the use of fete/getty and
/bin/ login for the console terminal.

Login is invoked instead of get ty for the console terminal by
loginre which is invoked by ini t after the system has booted
into multiuser mode and after the previous user has logged out. If
Login fails to execute for any reason, either loginre or Lo­
gin invokes getty to prevent init from endlessly respawning
Login.

Login reinitializes the Macintosh virtual machine state. Since
this can only be done when the Macintosh environment is not al­
ready running, Login cannot be entered as a command from
within a CommandShell window.

Login runs as a standalone application rather than in a Multi­
Finder environment so it can properly clean up its environment
when it executes the default shell of the user. For security rea­
sons, no desk accessories are available while Login is running.

The main login dialog box displayed by Login contains two ra­
dio buttons labeled Guest and Registered User, with the latter
selected initially. The Guest button is enabled only if there is an
entry in the / ete/passwd file for a user named Guest. Normal­
ly, two edit fields (also called text boxes) labelled Name and Pass­
word are shown. If the Guest radio button is enabled and is select­
ed, the word Guest is automatically entered into the name field,
unless the -g field is passed to Login. The -g flag specifies that
the user does not need to enter the Guest password to log in to that
account and hides the name and password fields.

The Login button at the bottom of the dialog box is initially dis­
abled. This allows the user to enter his or her name and then press
the RETURN key the get the password. (Pressing the TAB key or

February, 1990
Revision C

Login(lM) Login(lM)

clicking in the password field also works.) Once the user has en­
tered his or her name and moved the text edit cursor to the pass­
word field, the Login button is enabled. Pressing the RETURN key
again after entering the password is equivalent to clicking the Lo­
gin button and continues the login procedure.

When the user's name and password are verified, Login updates
accounting files and switches to the user's home directory, user
ID, and group ID, as specified in the / etc/passwd file entry for
the user.

If the user selects the Login button, the password-aging informa­
tion (if any) in the password field of the user's entry in
/ etc/passwd is examined (see passwd(4» for more informa­
tion on password aging). If the password has expired, or if the
user has no password but one is required, a dialog box is presented
asking the user to enter a new password. Once the user enters a
valid new password and selects the OK button, another dialog box
is presented asking the user to retype the new password for
verification. After typing the new password again, the user selects
the Login button in this second dialog box to continue the login
process.

If the user selects the Set Password button in the main login dialog
box rather than the Login button, the password-aging information
is examined to ensure that the password is changeable by the user
and that at least the minimum number of weeks have passed since
the password was last modified. Dialog boxes are presented ask­
ing the user to enter his or her new password, as described above.

Login then hides the main dialog box, changes the ownership
and modes of /dev/console and /dev/uinterO (the Ma­
cintosh user interface driver) so that only that user can execute
Macintosh applications while he or she is logged in, and changes
the ownership and modes of the Macintosh hierarchical file system
(HFS) disk partitions so that they show up on the user's desktop in
the Finder™.

Finally, Login does an exec(2) of the user's command inter­
preter or shell, which is specified in the /etc/passwd file entry
for the user. To indicate that this invocation of the command in­
terpreter is the login shell, the name of the interpreter is prefixed
with a minus sign, for example, -she If the command interpreter
field in the password file is empty, then the default command in­
terpreter, the Bourne shell (/bin/ sh), is used.

February, 1990 2
Revision C

Login(lM) Login(lM)

3

If the user's shell is a standard shell (as listed in /ete/ shells)
Login may pass the -e flag to the shell with an initial command
that runs a Macintosh type session as specified in the Options
menu of Login. Session types include A/UX Finder (32-bit),
NUX Finder (24-bit), and Console Emulator. For the Console
Emulator session type, the -e flag option is not required. See the
discussion of session types below for more information.

The basic environment (see environ(5» is initialized to:
HOME=your-login-directory
PATH=:lbin:lusrlbin:lusrlucb:lmaclbin
LOGNAME=your-lo gin-name
TERM=mae2
SHELL=last-field-of-passwd-entry
MAl L=lusrlmaillyour-login-name
FINDER EDITOR=/mae/bin/TextEditor
EDITOR~/usr/bin/vi
DISPLAY=hostname:O.O (used by the X Window System)

The FINDER EDITOR variable specifies which editor is invoked
when the userdouble-clicks on a text document icon. EDITOR is
used by many A/UX utilities.

Menu Options
In addition to the main dialog box, Login displays menus titled
Options and Special in addition to the Apple menu at the far left of
the menu bar. The following sections describe the action per­
formed by the various menu items.

The Apple Menu
About Login

Display a dialog box that gives version information.

The Options Menu
Change Password

Presents a dialog box with fields asking for the user's name,
old password, and new password. The name and old pass­
word fields contain the information that the user had already
typed into the name and password fields of the main dialog
box. The cursor is positioned at the first blank field. When
the user has entered the appropriate information and presses
the OK button, the password aging information is examined
to ensure that the password is changeable by the user and that
at least the minimum number of weeks have passed since the
password was last modified. If modification of the password
is permitted, this dialog box is then closed and a second dia-

February, 1990
RevisionC

Login(IM) Login(IM)

log box is presented asking the user to type his or her pass­
word for verification. After pressing the OK button in this
second dialog box~ the name and password fields on the main
dialog are updated to reflect the user's changes.

Change Session Type
Presents a dialog box allowing the user to change his session
type. This dialog box also has fields asking the user for his or
her name and password. These fields are initialized to con­
tain the same information as the user has already typed into
the main dialog box, if any. After pressing the OK button in
the dialog box, the name and password fields in the the main
dialog box are updated to reflect the user's changes.

The Special Menu
This menu is somewhat analogous to the Finder's Special menu.
It contains menu items to shut down and restart the system.

Restart
Present a dialog box asking for the root password (for securi­
ty purposes). If other users are logged in or other systems are
mounting NFS partions from this system, it also asks for a
message to send to those users and a time period to delay be­
fore restarting. After the user has responded to the dialog
box and the delay period has ended, the system is restarted.

ShutDown
Shuts down A/UX. It is similar to the Restart menu item, ex­
cept that when the delay period has ended, it turns the
machine off.

FLAG OPTIONS
Login is normally invoked only by loginrc(lM) which is in­
voked by init(1M), as specified in /etc/inittab and
/ etc/ loginrc. Only the superuser should have permission to
modify /etc/inittab. Thus, only the superuser can change
the behavior of Login by changing the command-line arguments
that are passed to it

Login uses some of the same startup code as startmac(IM).
Thus, Login accepts the startmac command-line arguments,
which are processed by get opt (3C). See startmac(1M) for
a description of these arguments.

February, 1990
Revision C

4

Login(1M) Login(lM)

Login also takes additional command line arguments. To speci­
fy these, use the getopt special option -- (two hyphens) to del­
imit the end of the startmac options. The additional Login
options must follow this special option. The additional options
are:

-r

-g

Session Types

Remove the normal UNIX® System V password
restrictions. See passwd(l) for a list of the res­
trictions.

Allow users to log in to the Guest account (if it ex­
ists) without entering the password. Passing this
flag also causes the name and password fields to be
hidden when the user chooses the Guest radio but­
ton.

Login supports a range of session types or environments which
the user may choose. The standard session types shipped with
A/UX are NUX Finder (32-bit), NUX Finder (24-bit), and Con­
sole Emulator. NUX Finder (32-bit) is the default, but the user
can change session type as described under the Options menu.

The /mac/ lib/ sessiontypes directory contains files which
specify session type information. There is one file per session
type. Each file is a Macintosh resources file containing one string
list whose ID is 128. The string list contains four strings, specify­
ing the following information:

• Session type name displayed in the list in the Change Session
Types dialog box.

• Session type description displayed in the dialog box when the
user selects the name.

• Default session startup command, passed the shell with the
-c flag option as the startup command.

• Custom session startup command name, if a file of this name
appears in the user's home directory, use it instead of the de­
fault session startup command.

EXAMPLES

5

The following is the resource file description used to create
/mac/lib/ sessiontypes/mac32, the NUX Finder (32-bit)
session type description file:

resource 'STR# (128) {

February, 1990
RevisionC

Login(IM) Login(IM)

"A/UX Finder (32-bit)";
"A/UX Finder (32-bit) is the normal"
"session type. Macintosh applications "
"that are not 32-bit clean will "
"not run properly in this mode.";

"/mac/bin/mac32";
".mac32"

} ;

Resource file descriptions of this type can be compiled using the
following command:

/mac/bin/ rez -i /: mac: lib: rincludes types. r filename.r

FILES
/mac/bin/Login
/mac/bin/%Login
/mac/lib/sessiontypes

/etc/shells
/etc/utmp
/etc/wtmp
/etc/motd
/etc/passwd
/etc/profile

/etc/cshrc
$HOME/.profile

$HOME/.login

$HOME/.cshrc
$HOME/.logout
/usr/mail/name

SEE ALSO

Login executable
Login resource file
Directory containing session
type specification files
List of standard shells
Accounting
Accounting
Message-of-the-day
Password file
Systemwide profile for sh(1) and
ksh(l)
Systemwide profile for csh(1)
Personal profile for sh(l) and
ksh(l)
Personal profile used at login time for
csh(l)
Personal profile for csh(1)
Personal profile used at logout for csh(l)
Mailbox for user name

init(IM), getty(lM), login(I), passwd(1), passwd(4),
csh(1), ksh(l), sh(1), mail(1), newgrp(l), profile(4), en­
viron(5).

AIUX Essentials.

February, 1990
RevisionC

6

Ipadmin(IM) Ipadmin(IM)

NAME
Ipadmin - configure the Ip spooling system

SYNOPSIS
/usr / lib/ Ipadmin -pprinter [-cclass] [-eprinter] [-h]
[-iinteiface] [-1] [-mmodel] [-rclass] [-vdevice]

/usr/lib/lpadmin -xdest

/usr / lib/ Ipadmin -d[dest]

DESCRIPTION
Ipadmin configures Ip spooling systems to describe printers,
classes, and devices. It is used to add and remove destinations,
change membership in classes, change devices for printers,
change printer interface programs, and change the system default
destination. Ipadmin may not be used when the Ip scheduler,
Ipsched(lM), is running, except where noted below.

Exactly one of the -p, -d, or -x flag options must be present for
every legal invocation of Ipadmin.

-d[dest] Make dest, an existing destination, the new system
default destination. If dest is not supplied, then there
is no system default destination. This flag option may
be used when Ipsched is running. No other flag
options are allowed with -d.

-xdest Remove destination dest from the Ip system. If dest
is a printer and is the only member of a class, then the
class is deleted, too. No other flag options are al­
lowed with -x.

-pprinter Name a printer to which all of the flag options below
refer. If printer does not exist, then it is created.

The following flag options are only useful with -p and may ap­
pear in any order. For ease of discussion, the printer is referred to
asP.

-cclass Insert printer P into the specified class, which is
created if it does not already exist.

-eprinter Copy the existing interface program of printer to be
the new interface program for P.

-h Indicate that the device associated with P is
hardwired. This flag option is assumed when creat­
ing a new printer, unless the -1 flag option is sup-

1 February, 1990
Revision C

Ipadmin(1M) Ipadmin(lM)

plied.

- iinterface Establish a new interface program for P, with inter­
face being the pathname of the new program.

-1 Indicate that the device associated with P is a login
terminal. The Ip scheduler Ipsched disables all
login terminals automatically each time it is started.
Before enabling P again, its current device should be
established using Ipadmin.

-mmodel Select a model interface program for P, with model
being one of the model interface names supplied with
the Ip software (see "Models" below).

-rclass Remove the printer P from the specified class. If Pis
the last member of class, then class is removed.

-vdevice Associate a new device with printer P, with device
being the pathname of a file that is writable by the 1 p
administrator, Ip. Note that there is nothing to stop
an administrator from associating the same device
with more than one printer. If only the -p and -v
flag options are supplied, then Ipadmin may be
used while the scheduler is running.

Restrictions
When creating a new printer, the -v flag option and one of the -
e, -i, or -m flag options must be supplied, but only one. The-h
and -1 flag options are mutually exclusive. Printer and class
names may be no longer than 14 characters and must consist en­
tirely of the characters A-Z, a-z, 0-9, and underscore U.

Models
Model printer interface programs are supplied with the 1 p
software. They are shell procedures that interface between
Ipsched and devices. All models reside in the directory
/usr/spool/lp/model and may be used as they are with
Ipadmin -m. Models should have 644 permission if owned by
Ip and bin, or 664 permission if owned by bin and bin. Alter­
natively, 1 p administrators may modify copies of models and then
use Ipadmin -i to associate them with printers.

The following list describes the models and lists the options that
they may be given on the Ip command line by using the -0 flag
option:

February, 1990
Revision C

2

lpadmin(1M) lpadmin(1M)

dumb This model is the interface for a line printer without spe­
cial functions and protocol. Form feeds are assumed.
This is a good model to copy and modify for printers that
do not have models.

1640 This model is the interface for a Diablo 1640 printer using
XON/XOFF protocol at 1200 baud. The options are:

-12
Specify 12-pitch. The default is 10-pitch.

-f Do not use the 450(1) filter. The output has been
preprocessed by either 450(1) or the nroff 450
driving table.

hp This model is the interface for a Hewlett-Packard 2631A
line printer at 2400 baud. The options are:

-c Use compressed print.
-e Use expanded print.

p rx This model is the interface for a Printronix P300 or P600
printer using the XON/XOFF protocol at 1200 baud.

EXAMPLES

3

Here are some examples of how to use the various printers:

1. Assuming there is an existing Hewlett-Packard 2631A line
printer named hp2, it will use the hp model interface after
the command:

/usr/lib/lpadmin -php2 -rohp

To obtain compressed print on hp2, use the command:

lp -dhp2 -o-cfiks

2. A Diablo 1640 printer named s t 1 can be added to the 1 p 1
configuration with the command:

/usr/lib/lpadmin -pst1 -v/dev/tty20
-m1640

An nroff document may be printed on st1 in any of the
following ways:

nroff -T450fiks I lp -dst1 -of
nroff -T450-12fiks I lp -dst1 -of
nroff -T37fiks I col I lp -dst1

The following command prints the password file on s t 1 in
12-pitch:

February, 1990
RevisionC

Ipadmin(1M) Ipadmin(1M)

Ip -dst1 -012 /etc/passwd

Note: The -12 option of the 1640 model should
never be used in conjunction with nroff.

FILES
/usr/lib/lpadmin
/usr/spool/lp/*
/usr/lib/OUTQLCK

SEE ALSO
enable(l), Ip(1), Ipstat(I), nroff(1), accept(1M),
Ipsched(IM).

February, 1990
RevisionC

4

Ipc(IM) Ipc(IM)

NAME
lpc -line-printer control program

SYNOPSIS
/etc/lpc [command [argument ...]]

DESCRIPTION

1

lpc is used by the system administrator to control the operation
of the line-printer system. For each line printer configured in
/etc/printcap, lpc may be used to:

• disable or enable a printer

• disable or enable a printer's spooling queue

• rearrange the order of jobs in a spooling queue

• find the status of printers, and their associated spooling
queues and printer dameons

Without any arguments, lpc prompts for commands from the
standard input. If arguments are supplied, I pc interprets the first
argument as a command and each remaining argument as a
parameter to command. The standard input may be redirected
causing lpc to read commands from a file. Commands may be
abbreviated. The following is the list of recognized commands:

? [command ...]

help [command ...]
Print a short description of each command specified in the ar­
gument list, or if no arguments are given, print a list of the
recognized commands.

abort { all I printer... }
Terminate an active spooling daemon on the local host im­
mediately and then disable printing for the specified printers.
(To prevent new daemons from being started by lpr.)

clean { all I printer... }
Remove any temporary files, data files, and control files that
cannot be printed from the specified printer queue(s) on the
local machine. (For example, do this so as not to form a
complete printer job.)

disable { all I printer... }
Turn off the spooling queues for the specified printers. This
command prevents lpr from entering new printer jobs in the
queue.

February, 1990
RevisionC

Ipc(IM) Ipc(IM)

down { all I printer } message ...
Turn off the spooling queue for the specified printers, disable
printing, and put message in the printer status file. The
message doesn't need to be quoted. The remaining argu­
ments are treated like echo(I). This command is normally
used to take a printer down and let others know why. I pq
indicates the printer is down and prints the status message.

enable { all I printer ... }
Enable spooling on the local queue for the listed printers.
This command allows I p r to put new jobs in the spool
queue.

exit

quit
Exit from lpc.

restart { all I printer ... }
Attempt to start a new printer daemon. This command is use­
ful when some abnormal condition causes the daemon to die
unexpectedly and leaves jobs in the queue. I pq reports that
no daemon is present when this condition occurs. If the user
is the super-user, try to abort the current daemon first, that is,
kill and restart a stuck daemon.

start { all I printer ... }
Enable printing and start a spooling daemon for the listed
printers.

status { all I printer ... }
Display the status of daemons and queues on the local
machine.

stop { all I printer ... }
Stop a spooling daemon after the current job completes and
disable printing.

t opq printer [jobnum...] [user...]
Place the jobs in the order listed at the top of the printer
queue.

up { all I printer ... }
Enable everything and start a new printer daemon. Undoes
the effects of down.

February, 1990
Revision C

2

Ipc(IM) Ipc(IM)

FILES
/etc/printcap
/usr/spool/*
/usr/spool/*/lock

Printer description file
Spool directories
Lock file for queue control

SEE ALSO
Ipd(1M)t Ipr(1)t Ipq(l)t Iprm(l)t printcap(4).

DIAGNOSTICS

3

Here are some of the common error messages and a brief explana­
tion of each:

?Ambiguous command
The abreviation matches more than one command.

?Invalid command
No match was found.

?Privileged command
The command can be executed by root only.

February t 1990
RevisionC

Ipd(IM) Ipd(IM)

NAME
Ipd-4.2line-printer daemon

SYNOPSIS
/usr/lib/lpd [-1] [port #]

DESCRIPTION
1pd is the line-printer daemon (spool area handler) and is normal­
ly invoked at boot time from the inittab(4) file. It makes a sin­
gle pass through the printeap(4) file to find out about the exist­
ing printers and prints any files left after a crash. It then uses the
system calls listen(2) and aeeept(2) to receive requests to
print files in the queue, transfer files to the spooling area, display
the queue, or remove jobs from the queue. In each case, it forks a
child to handle the request so the parent can continue to listen for
more requests. The Internet port number used to rendezvous with
other processes is nonnally obtained with getservbyname(3)
but can be changed with the port# argument. The -1 flag causes
1 pd to log valid requests received from the network. This can be
useful for debugging purposes.

Access control is provided by two means. First, all requests must
come from one of the machines listed in the file
/ete/hosts. equiv or fete/hosts .1pd. Second, if the
"rs" capability is specified in the printeap entry for the printer
being accessed, Ipr requests are only honored for those users
with accounts on the machine with the printer.

The file minfree in each spool directory contains the number of
disk blocks to leave free so that the line printer queue won't com­
pletely fill the disk. The minfree file can be edited with your
favorite text editor.

The file lock in each spool directory is used to prevent multiple
daemons from becoming active simultaneously and to store infor­
mation about the daemon process for Ipr(l), Ipq(1), and
Iprm(I). After the daemon has successfully set the lock, it scans
the directory for files beginning with e f. Lines in each e f file
specify files to be printed or specify non-printing actions to be per­
fanned. Each such line begins with a key character to specify
what to do with the remainder of the line:

J Job name: string to be used for the job name on the banner
page (the page with the job ID)

February, 1990 1
RevisionC

Ipd(IM) Ipd(IM)

C Classification: string to be used for the classification line on
the banner page

L Literal: the line containing identification info from the pass-
word file and causing the banner page to be printed

T Title: string to be used as the title for pr(l)

H Host name: name of the machine where Ipr was invoked

P Person: login name of the person who invoked 1 p r that is
used to verify ownership by 1 P rm

M Mail: mail to be sent to the specified user when the current
print job completes

f Formatted file: the name of a file already formatted, which is
to be printed

1 Similar to "f," but also passing control characters and not
making page breaks

p Filename: name of a file to be printed using pr(1) as a filter

t Troff file: the file containing troff(l) output (cat photo­
typesetter commands)

n Ditroff file: the file containing device-independent troff out­
put

d DVI file: the file containing Tex(l) output (DVI fonnat from
Stanford)

g Graph file: the file containing data produced by plot(3X)

c Cifplot file: the file containing data produced by ci fpl ot

v the file containing a raster image

r the file containing text data with FORlRAN carriage-control
characters

1 Troff Font R: the name of the font file to use instead of the
default

2 Troff Font I: the name of the font file to use instead of the de­
fault

3 Troff Font B: the name of the font file to use instead of the
default

4 Troff Font S: the name of the font file to use instead of the
default

2 February, 1990
Revision C

Ipd(1M) Ipd(1M)

W Width: the number of characters to specify the page width
used by p r(1) and the text filters

I Indent the number of characters to indent the output by (in
ASCII output)

U Unlink: the name of the file to be removed on completion of
printing

N Filename: the name of the file that is being printed, or a
blank for the standard input (when Ipr is invoked in a pipe­
line)

If a file cannot be opened, a message is logged via syslog(3) by
using the LOG_LPR facility. Ipd tries up to 20 times to reopen a
file it expects to be there, after which it skips the file to be printed.

Ipd uses flock(2) to provide exclusive access to the lock file
and to prevent multiple daemons from becoming active simultane­
ously. If the daemon should be killed or die unexpectedly, the
lock file need not be removed. The lock file is kept in a readable
ASCII form and contains two lines. The first line is the process
ID of the daemon, and the second is the control filename of the
current job being printed. The second line is updated to reflect the
current status of Ipd for the programs Ipq(1) and Iprm(1).

FILES
/etc/printcap
/usr/spool/*
/usr/spool/*/minfree
/dev/printer
/dev/printer.socket
/etc/hosts.equiv
/etc/hosts.lpd

SEE ALSO

Printer description file
Spool directories
Minimum free space to leave
Line-printer device
Socket for local requests
Lists of machine names allowed printer access
Lists of machine names allowed printer access,
but not under same administrative control

Ipc(1M), pac(1), Ipr(1), Ipq(1), Iprm(l), syslog(3),
printcap(4).

February, 1990 3
Revision C

Ipmove(IM) Ipmove(1M)

See Ipsched(IM)

1 February, 1990
RevisionC

lpsched(1M) lpsched(IM)

NAME
lpsched, lpshut, lpmove - start or stop the LP request
scheduler and move requests

SYNOPSIS
/usr/lib/lpsched

/usr/lib/lpshut

/usr / lib/ lpmove requests dest

/usr/lib/lpmove destl dest2

DESCRIPTION
lpsched schedules requests taken by lp(l) for printing on line
printers.

lpshut shuts down the line printer scheduler. All printers that
are printing at the time lpshut is invoked will stop printing. Re­
quests that were printing at the time a printer was shut down will
be reprinted in their entirety after lpsched is started again. All
LP commands perform their functions even when lpsched is not
running.

1 pmove moves requests that were queued by 1 p(1) between LP
destinations. This command may be used only when lpsched is
not running.

The first form of the command moves the named requests to the
LP destination, dest. Requests are request ids as returned by lp.
The second form moves all requests for destination destl to desti­
nation dest2. As a side effect, lp will reject requests for destl.

Note that 1 pmove never checks the acceptance status (see
accept(1M» for the new destination when moving requests.

FILES
/usr/lib/lpsched
/usr/lib/lpshut
/usr/lib/lpmove
/usr/spool/lp/*

SEE ALSO
accept(1M), enable(I), lp(I), lpadmin(IM), lpstat(I).

February,1990
Revision C

1

Ipshut(IM)

See Ipsched(lM)

1

Ipshut(IM)

February, 1990
Revision C

Iptest(1M) Iptest(1M)

NAME
Iptest - generate line-printer ripple pattern

SYNOPSIS
Iptest [length [count]]

DESCRIPTION
Iptest writes the traditional "ripple test" pattern on standard
output. In 96 lines, this pattern prints all 96 printable ASCII char­
acters in each position. While originally created to test printers,
Iptest is quite useful for testing terminals, driving terminal
ports for debugging purposes, or doing any other task where a
quick supply of random data is needed.

The argument length specifies the output line length if the default
length of 79 is inappropriate.

The argument count specifies the number of output lines to be
generated if the default count of 200 is inappropriate. Note that if
count is to be specified, length must be also be specified.

SEE ALSO
Ipc(1M), Ipd(1M), Ipr(1), Ipq(1), Iprm(1).

February, 1990 1
Revision C

macquery(lM) macquery(lM)

NAME
macquery - post a Macintosh® alert box to query the user

SYNOPSIS
macquery [-t timeout] [-a] [-c] [-n] [-s] resource-file
alertID [parmi ... parm4]

DESCRIPTION
macquery is invoked by shell scripts or commands that do not
directly use the Macintosh Toolbox but still need to present a
Macintosh interface when asking the user simple questions or giv­
ing the user information. It is used to post an alert box that asks a
question or supplies information. The alert box may include static
text, icons, and QuickDraw™ pictures, but should not include
check boxes, radio buttons, editable text fields, or other more com­
plex controls. (See Chapter 13 of Inside Macintosh, Volume I, for
more information about alerts and controls.) Typically, Apple's
ResEdit utility is used to create alert resource definitions.

The command that invokes macquery must supply a resource
filename resource-file and the ID alertID of an alert resource
defined in that file. The alert is posted exactly as it is defined in
the resource, unless a flag option indicates that one of the standard
alert icons should also be displayed in the alert box. (See Inside
Macintosh, Volume I, for more discussion of the various types of
standard alerts.)

Up to four parameter strings may be included in the arguments.
These replace the corresponding special strings '''0' through '''3'
in the strings in the alert definition. (See the discussion of the
ParamText call in Inside Macintosh, Volume I, for further discus­
sion of parameter strings usage.)

When the user chooses an enabled button, macquery closes the
alert and exits. The exit status indicates which button the user
chose (or that an error occurred). See the section "EXIT
CODES" for more information.

FLAG OPTIONS

1

The following flag options are interpreted by macquery:

-t timeout
Select the default button automatically if the user has not
selected a button in the alert box after timeout seconds. The
default button must be the first item in the alert definition and
is indicated visually by a bold outline.

February, 1990
Revision C

macquery(lM) macquery(lM)

-a Post the alert box exactly as it is defined in the
resource file.

-c Post the alert box as a Caution alert box.

-n Post the alert box as a Note alert box.

-s Post the alert box as a Stop alert box.

EXAMPLE
Because f sck(1M) is not linked as an A/UX® Toolbox com­
mand, the Macintosh environment does not have to be running to
run fsck. However, fsck can invoke macquery to ask the
user whether to repair damaged file systems. If the Macintosh en­
vironment is not running, macquery exits quickly with an error
exit status. In this case, if fsck is running on / dev / console,
its prompt messages would be displayed on the screen, and fsck
reads the user's response from / dev / console instead of using
the exit status of mac query.

The command that fsck uses to display the alert box is:

/mac/bin/macquery -ttim£out -c /etc/fsck 129 file-system-mount-point

In this example, the value of timeout is supplied as an argument to
fsck. The file-system-mount-point is the pathname at which the
file system that needs repairs would be mounted, for example, It/".

EXIT CODE
The exit status is used both to indicate an error and to report which
button the user clicked.

If the exit status is 1, an error occurred. For example, the
Macintosh environment is not running, or the resource file is miss­
ing. Diagnostic alert boxes or printed messages are posted.

If the exit status is between 201 and 225, the user chose the
corresponding item numbered between 1 and 25 in the alert
resource. Thus, an exit status of 201 indicates that the default but­
ton was chosen. Constants named ANSWER_MIN and
ANSWER_MAX have been defined for these values in
/usr/include/apple/macquery. h for use by C program­
mers.

February, 1990 2
RevisionC

macquery(lM)

FILES
/mac/bin/macquery
/mac/bin/%macquery
/usr/include/apple/macquery.h

SEE ALSO
Inside Macintosh, Volumes I and V.

3

macquery(lM)

February, 1990
RevisionC

macsysini trc(1M) macsysini trc(1M)

See brc(1M)

February, 1990 1
Revision C

mailq(lM)

NAME
mailq -list the contents of the mail queue

SYNOPSIS
mailq [-v]

DESCRIPTION
mailq lists the contents of the mail queue.

mailq interprets the following flag option:

-v Show all details of jobs in the mail queue.

FILES
/usr/ucb/mailq
/usr/spool/mqueue/*

SEE ALSO
sendmail(1M).

1

temp files

mailq(lM)

February, 1990
RevisionC

makedbm(IM) makedbm(1M)

NAME
makedbm - make a yellow pages dbm file

SYNOPSIS
makedbm [-i yp-input-,file] [-0 yp-output-name]
[-d yp-domain-name] [-m yp-master-name] infile outfile

makedbm [-u dbmfilename]

DESCRIPTION
makedbm takes infile and converts it to a pair of files in dbm(3X)
format, namely outfile. pag and outfile. dir. Each line of the in­
put file is converted to a single dbm record. All characters up to
the first tab or space form the key, and the rest of the line is the
data. If a line ends with \, then the data for that record is contin­
ued on to the next line. It is left for the clients of the yellow pages
to interpret =It; makedbm does not itself treat it as a comment char­
acter. infile can be -, in which case standard input is read.

makedbm is meant to be used in generating dbm files for the yel­
low pages, and it generates a special entry with yp-last-modified,
which is the date of infile (or the current time, if infile is -).

FLAG OPTIONS
- i Create a special entry with the key YP _INPUT _ FILE.

-0 Create a special entry with the key YP _OUTPUT_NAME.

-d Create a special entry with the key YP _DOMAIN_NAME.

-m Create a special entry with the key YP MASTER NAME. If
no master host name is specified, YP MASTER NAME will
be set to the local host name. - -

-u Undo a dbm file. That is, print out a dbm file one entry per
line, with a single space separating keys from values.

EXAMPLE
It is easy to write shell scripts to convert standard files such as
/ etc/passwd to the key value form used by makedbm. For
example

=It!/bin/awk -f
BEGIN { FS = ":"; OFS = "\t"; }
{ print $1, $0 }

takes the / etc/passwd file and converts it to a form that can be
read by makedbm to make the yellow pages file
passwd.byname. That is, the key is a usemame, and the value

February, 1990
Revision C

1

makedbm(1M)

is the remaining line in the / etc/passwd file.

FILES
/etc/yp/makedbm

SEE ALSO
yppasswd{l), dbm(3X).

2

makedbm(1M)

February, 1990
RevisionC

mkfs(IM) mkfs(IM)

NAME
mkf s - construct an SVFS file system

SYNOPSIS
/etc/mkfs device-file blocks[: inodes] [gap modulus]

/ etc/mkfs device-file proto [gap modulus]

DESCRIPTION
mkfs constructs a System V file system (SVFS) by writing on the
partition (logical disk) associated with device-file according to the
directions found in the remainder of the command line. The com­
mand waits 10 seconds before starting to construct the file system.
If the second argument is given as a string of digits (blocks),
mkfs builds a file system with a single empty directory on it The
size of the file system corresponds to the value of blocks interpret­
ed as a decimal number. This is the number of physical disk
blocks the file system will occupy. The content of block 0 of the
new file system is left uninitialized. If inodes is omitted, the de­
fault used is the value resulting when blocks is divided by 4.

If the second argument is a filename that can be opened (proto),
mkf s treats it as a proto file containing specifications for control­
ling the creation of a new file system. The overall format of the
proto file is as follows:

program
blocks inodes
file-system-mode user-id group-id
[directory-name directory-mode user-id group-id

[file-name file-mode user-id group-id initial-contents]

$

(Braces surround optional items.)

In the first line of the proto file format, program should be re­
placed with the name of a file to be copied onto block 0 of the new
file system. This collection of bytes is sometimes called the
bootstrap program.

February, 1990
Revision C

1

mkfs(IM) mkfs(IM)

2

In the second line of the proto file format, blocks should be re­
placed with the size of the new file system in disk (512-byte)
blocks. Typically the size is the number of blocks within a parti­
tion created with Apple® HO SC Setup. Refer to the disk
management section of A/UX Local System Administration for de­
tails about the use of Apple HO SC Setup in terms of A/UX ®.

Appearing after blocks in the second line is inodes. It should be
replaced with the the number of inode slots for the new file sys­
tem. Each inode slot can contain the operating system data that
describes one file. The maximum number of configurable inode
slots is 65,500, but the actual number depends on the number of
blocks available to the new file system. Eight inode slots fill one
disk block (512 bytes).

In the third line of the proto file format is file-system-mode. The
first three characters offile-system-mode are d--. The last three
characters of file-system-mode are the permission digits for the
owner, group, and all other users that the mount point acquires
whenever the new file system is mounted on it. See mount(1M)
and chmod(1) for details.

Appearing after file-system-mode in the third line is user-id. It
should be replaced with the numeric user 10 of the user account
that you wish to own the file. Appearing after user-id is group-id.
It should be replaced with the numeric group 10 of the group ac­
count that you wish to be associated with the file.

The optional fourth line of the proto file format is the beginning of
a directory specification. A directory specification is unusual be­
cause it requires more than one line to specify completely. At
least one other line is required, and it must contain the end­
directory delimiter $. Between the starting and ending lines of a
directory specification, you can place any number of file
specifications or additional (nested) directory specifications. The
number of lines in a directory specification depends on the number
of files and nested directories with which the file system is to be
initialized.

On the first line of a directory specification is directory-name,
which should be replaced with a legal A/UX filename (up to 14
characters). Appearing after directory-name is directory-mode.
Its replacement value can be treated the same as file-system-mode .
Appearing after directory-mode is user-id and group-id, which
have already been described.

February, 1990
RevisionC

mkfs(IM) rnkfs(IM)

The remaining lines of the directory specification are any number
of file specifications, any number of embedded directory
specifications, and lastly, a line containing the end-directory del­
imiter $.

The length of a file specification is one line. It begins with a value
for file-name, which should be a legal NUX filename (up to 14
characters).

Appearing after filename is file-mode. It should be replaced with a
6-character string, where the first character specifies the file type:

Specify a regular file.
b Specify a block device file.
c Specify a character device file.

See rnknod(1M) for explanations of block and character device
files.

The second character of file-mode specifies whether the set-user­
ID permission is set or not:

u Set the set-user-ID mode.
Do not set the set-user-ID mode.

The third character of file-mode indicates whether the set-group­
ID permission is set or not:

g Set the set -group-ID mode.
Do not set the set-group-ID mode.

The last three characters of file-mode are used to specify the octal
number corresponding to the desired octal permission digits for
the owner, group, and all other users. See chrnod(1).

Appearing after file-mode are user-id and group-id, which have al­
ready been described.

Appearing after group-id is initial-contents. It should be replaced
with the pathname of the file which will be used as the source of
data that is copied into file-name.

If the file specification line is supposed to represent a device file,
the file specification follows a slightly different format:

file-name file-mode user-id group-id major-no minor-no

As can be seen, initial-contents is replaced with major and minor
device numbers. See intro(7) for more information about dev­
ice files, and about major and minor device numbers.

February, 1990
RevisionC

3

mkfs(IM) mkfs(IM)

Before any file specification can be given, an enclosing directory
specification must be given. The format of a directory entry is
similar to a file-specification line but lacks initial-contents infor­
mation. For each directory specification, mkf s makes the directo­
ry entries. and.. before continuing. Once these directory pro­
visions are made, it can build the files for any file-specification
lines that might follow up to the end-directory delimiter. Since
nested directory specifications are permitted, mkf s recursively
builds those nested files and directories.

A sample proto file specification is:

/stand/diskboot
4872 110
d--777 3 1
usr d--777 3 1

sh ---755 3 1 /bin/sh
john d--755 6 1

$
bO b--644 3 1 0 0
cO c--644 3 1 0 0
$

$

The following directory listings illustrate the initial contents of the
file system that would follow from the preceding specification:

% ls -ld usr

drwxr-xr-x 3 sys

% ls -lR usr

daemon 96 Aug 7 14:43 usr

4

total 93

brw-r--r-- 1 sys

crw-r--r-- 1 sys

drwxr-xr-x 2 6

-rwxr-xr-x 1 sys

usr/john:

total a

daemon

daemon

daemon

daemon

0, a Aug 7 14:43

0, a Aug 7 14:43

32 Aug 7 14:42

46172 Aug 7 14:42

The files displayed for the usr directory are listed in reverse of
the order of their creation because the 1 s command sorts each
line alphabetically according to filename.

February. 1990
RevisionC

bO

cO

john

sh

mkfs(IM) mkfs(IM)

Whether or not a proto file is given, the rotational gap and the
modulus values can be specified within the mk f s command line.
The value of gap allows certain disk blocks to be treated as logi­
cally contiguous even though they are not physically contiguous.
Specifically, those blocks that are gap blocks apart are treated as if
they are contiguous during reads and writes. By doing this, the
time delay between two consecutive reads or writes of blocks can
be accounted for and the disk media does not rotate beyond the lo­
cation of the next physical block. Rather than wait for the disk to
make a complete revolution before the missed block comes under
the read/write head once again, performance is better if alternating
disk blocks are treated as if they were contiguous.

The value of modulus is needed to help determine what blocks are
treated as logically contiguous. With each complete revolution,
some extra offset may have to be introduced besides the fixed
value gap. For example, for a gap value of 2 and a hypothetical 10
blocks per revolution, physical blocks 0, 2, 4, 6, and 8 would be
treated as contiguous. However, if this were continued throughout
the disk, odd-numbered physical blocks would never become ac­
cessible. A modulus value of 10 corrects the mapping so that after
physical block 8 is mapped, block 1 is mapped, followed by 3, 5,
7, and 9.

Also note that modem hard disks perform a similar function inter­
nally so that the operating system need not be encumbered with
the function of disk-block remapping. For all but a very few rare
cases (hard disks not sold by Apple and of old vintage), these
operating system facilities do not result in increased performance.
Even when optimization is possible, it cannot be achieved unless
you can determine from technical specifications for the disk what
values are needed.

The default values 1 for gap and 1 for modulus suppress the
remapping of disk blocks. The default values are used if gap and
modulus are considered illegal values or if they are omitted.

EXAMPLE
To make an 800 KB file system on a 3.5-inch floppy disk, use

mkfs /dev/rfloppyO 1600

This makes a file system on the floppy media referenced through
/dev/rfloppyO. The new file system extends for 1600 512-
byte disk blocks (800 KB).

February, 1990
Revision C

5

mkfs(1M) mkfs(lM)

FILES
/etc/fs/svfs/mkfs

SEE ALSO
chmod(I), fsirand(IM), mknod(IM), dir(4), fs(4),
intro(7), boot(8).

BUGS

6

When a proto file is used, mkfs can create a file system larger
than the physical media.

If a proto file is used, it is not possible to initialize a file larger
than 64 KB, nor is there a way to specify links.

February, 1990
RevisionC

mkfslb(IM) mkfslb(IM)

NAME
mk f s 1 b - construct a file system with 512-byte blocks

SYNOPSIS
/ etc /mkf s lb special blocks[: inodes] [m n]
/ etc/mkfslb special proto [m n]

DESCRIPTION
mkfslb constructs a file system by writing on the special file spe­
cial. mkfslb operates exactly like mkfs except that the logical
blocks created are 512 bytes instead of 1024 bytes.

In the first form of the command, a numeric size is given and
mkfslb builds a file system with a single empty directory on it.
The number of inodes is calculated as a function of the file system
size. m is an interleave factor for building the freelist and n is a
modulo for m. See the example for usage.

Note: All file systems should have a lost+found directory for
fsek(IM); this should be created for each file system by running
mklost+found(IM) in the root directory of a newly created file
system, after the file system is first mounted.

In bootstrapping, the second form of mkfslb is sometimes used.
In this form, the file system is constructed according to the direc­
tions found in the prototype file proto. The prototype file contains
tokens separated by spaces or new lines. The first token is the
name of a file to be copied onto sector zero as the bootstrap pro­
gram. The second token is a number specifying the size of the
created file system. Typically it will be the number of blocks on
the device, perhaps diminished by space for swapping. The next
token is the number of inodes in the i-list. The next set of tokens
comprise the specification for the root file. File specifications con­
sist of tokens giving the mode, the user ID the group ID, and the
initial contents of the file. The syntax of the contents field
depends on the mode.

The mode token for a file is a 6 character string. The first charac­
ter specifies the type of the file. (The characters -bed specify
regular, block special, character special and directory files, respec­
tively.) The second character of the type is either u or - to speci­
fy set-user-id mode or not. The third is g or - for the set-group-id
mode. The rest of the mode is a three digit octal number giving
the owner, group, and other read, write, execute permissions. See
ehmod(1).

February, 1990
Revision C

1

mkfslb(1M) mkfslb(IM)

Two decimal number tokens come after the mode; they specify the
user and group IDs of the owner of the file.

If the file is a regular file, the next token is a path name whence the
contents and size are copied.

If the file is a block or character special file, two decimal number
tokens follow which give the major and minor device numbers.

If the file is a directory, mk f s 1 b makes the entries . and.. and
then reads a list of names and (recursively) file specifications for
the entries in the directory. The scan is terminated with the token
$.

A sample prototype specification follows:

/usr/mdec/uboot
4872 55
d--777 3 1
usr d--777 3 1

sh ---755 3 1 /bin/sh
ken d--755 6 1

$
bO b--644 3 1 0 0
cO c--644 3 1 0 0
$

$

EXAMPLE

2

mkfslb /dev/fdO 2000 7 50

makes a file system in which 2000 is the total size of the file sys­
tem to be put on /dev/fdO; 7 is a sector interleave number
which is used to stagger the disk blocks for more rapid reading,
every 7 blocks, and 50 is a modulo operator that forces the sector
interlace number first to allocate all blocks in the first 50 sectors,
then the next 50, etc.

Note: The proper selection of the m and n parameters can
improve disk efficiency. Disks which have full or partial
track buffering should specify a m and n of 1 and 1. m and
n for other disks must be determined by trial and error as
the disk latency is related to rotational latency and CPU
speed.

February, 1990
Revision C

mkfslb(IM) mkfslb(1M)

FILES
/etc/mkfslb

SEE ALSO
fsck(IM), mklost+found(IM), dir(4).

BUGS
The default is 3500, which is probably not useful on any disk.
There should be some way to specify links.
There should be some way to specify bad blocks.
Should make lost+found automatically.

February, 1990
RevisionC

3

mklost +found(1M) mklost+found(IM)

NAME
mklost+found - make a lost+found directory for fsck

SYNOPSIS
mklost+found

DESCRIPTION
A directory lost+found is created in the current directory and a
number of empty files are created therein and then removed so
that there will be empty slots for fsck(IM). This command
should be run immediately after first mounting and changing
directory to a newly created file system. For small file systems, it
is sufficient (and much faster) to simply make a lost+found direc­
tory. Up to 30 files can be recovered in it.

EXAMPLE
mklost+found

in the current directory, creates a directory with empty slots
named lost+found.

FILES
/bin/mklost+found

SEE ALSO
fsck(IM), mkfs(1M).

BUGS
Should be done automatically by mkfs.

1 February, 1990
RevisionC

mknod(IM) mknod(IM)

NAME
mknod - build device file

SYNOPSIS
/ etc/mknod name type [major minor]

/etc/mknodname p

DESCRIPTION
mknod makes a directory entry and corresponding inode for a
device file. The first argument is the name of the entry. type can
be "b" for block interfaces to devices; "c" for character or raw
device interfaces; or "p" for named pipes. In the latter case (p),
no other arguments are needed. Otherwise, the last two arguments
(major and minor) are required. These numbers specify the major
device type and minor device (e.g., unit, drive or line number),
which may be either decimal or octal.

The assignment of major device numbers is specific to each sys­
tem.

EXAMPLE
mknod /dev/tty4 c 3 4

would create file / dev / tty 4 as a character device file with ma­
jor number 3 and minor number 4.

FILES
/etc/mknod

SEE ALSO
mknod(2).

February, 1990
Revision C

1

mkslipuser(1M) mkslipuser(IM)

NAME
mkslipuser - initialize the slip user database

SYNOPSIS
/ete/mkslipuser

DESCRIPTION
mkslipuser is used to create the file / ete/ slip. user
based on the configuration file /ete/ slip. eonfig. The
/ete/ slip. user file records the current number of slip
users on the system and the number of available slip interfaces.
The /ete/slip.user file is not human readable. Use
dslipuser(IM) to display the contents of the
/ete/ slip. user file.

Only the superuser may initialize the slip user database.

EXAMPLE
/ete/mkslipuser

FILES
/ete/slip.eonfig

System configuration file

/ete/slip.user
User file to be created

/ete/slip.hosts
User-to-host address mapping file (not used directly but
of related interest)

SEE ALSO

1

dslipuser(1M), slip(1M), slip. eonfig(4),
slip. user(4).

February, 1990
RevisionC

module _ dump (1M) module_dump(IM)

NAME
module dump - identify configuration information stored
within the named kernel file

SYNOPSIS
module_dump kernel

DESCRIPTION
module dump dumps information from the section MODULES in
the A/UXkernel specified by the argument kernel. The kernel is
the filename of the NUX kernel you want infonnation from. For
example,

module_dump /unix

This is information normally put into place by the
autoconfiguration process and describes the environment for
which the kernel is configured.

FILES
/usr/bin/module_dump

SEE ALSO
autoconfig(lM).

February, 1990
Revision C

1

monacct (1M)

See acctsh(IM)

1

monacct (1M)

February, 1990
Revision C

mount(lM) mount(IM)

NAME
mount, umount - mount and dismount file systems

SYNOPSIS
/ etc/mount [-p]

/ etc/mount -a [frv] [-t type] [-T type]

/ etc/mount [-frv] [-t type] [-T type] [-0 options]
device-file mount-point

/etc/umount [-v] -h host

/etc/umount -a[v]

/ etc/umount [-v] [device-file] .. .

/ etc/umount [-v] [mount-point] .. .

DESCRIPTION
mount enables access to the files and directories in a file system
contained in the disk or disk partition referenced as device-file.
The topmost directory of the add-on file system is attached to the
directory tree at mount-point. The directory mount-point must al­
ready exist. It serves as the entry point for the newly-mounted file
system for as long as the file system remains mounted. If any files
or directories had been placed below the mount-point directory be­
fore mounting, they become hidden. If device-file is specified as
host: mount-point the file system type is assumed to be a network
file system (NFS) that can be reached across the Ethernet network
(see exports(4».

umount disables access to the files and directories in an add-on
file system referenced through mount-point or device-file.

mount and umount maintain a table of mounted file systems in
/ etc/mtab, described in mtab(4). If invoked without an argu­
ment, mount displays the table. Note that since /etc/mtab can
be modified by commands other than mount and umount, its
contents may not accurately reflect what is actually mounted. If
invoked with only device-file or mount-point, mount searches
/ et c / f stab for an entry whose device-file or mount-point field
matches the given argument. For example,

mount /usr

and

mount /dev/floppyO

February, 1990 1
Revision C

mount(lM) mount(lM)

2

are shorthand for

mount /dev/floppyO /usr

if the following line is in / et c / f stab:

/dev/floppyO /usr 5.2 rw 1 1

MOUNT FLAG OPTIONS
The following flag options are interpreted by mount:

-p Print the list of mounted file systems in a format suitable for
use in /etc/fstab.

-a Attempt to mount all the file systems described in
/etc/fstab. In this case, device-file and mount-point are
taken from /etc/fstab. If a type is specified with the-t
or -T options, all of the file systems in / et c / f stab with
that type are mounted. File systems are not necessarily
mounted in the order listed in /etc/fstab.

-f Fake a new / etc/mtab entry. This does not actually
mount any file systems.

-v Provide verbose output; mount displays a message indicat­
ing which file system is being mounted.

-t or -T The next argument is the file system type. The accept­
ed types are: 4.2 (UPS), 5.2 (SVFS), nfs, and pc; see
fstab(4) for a description of the legal file system types.

-0 Specifies options, a list of comma-separated words from the
following list. Some options are valid for all file system
types, while others apply to a specific type only.

options valid on all file systems (the default is rw, noquo­
ta) are:

quota

noquota

rw

ro

suid

nosuid

Enforce usage limits.

Do not enforce usage limits.

Read/write.

Read-only.

Allow set-user-ID execution.

Do not allow set-user-ID execution.

February, 1990
RevisionC

mount(1M) mount(1M)

options specific to nf s (NFS) file systems are:

bg If the first mount attempt fails, retry in the
background.

fg

retry=n

rsize=n

wsize=n

timeo=n

retrans=n

port=n

soft

hard

The defaults are

Retry in the foreground.

Set number of mount failure retries to n.

Set read buffer size to n bytes.

Set write buffer size to n bytes.

Set NFS timeout to n tenths of a second.

Set number of NFS retransmissions to n.

Set server IP port number to n.

Return error if server doesn't respond.

Retry request until server responds.

fg,retry=1,timeo=7,retrans=4,port=NFS_PORT,hard

with defaults for rsize and wsize set by the kernel.

The bg option causes mount to run in the background if
mountd(1M) of the server does not respond. mount at­
tempts each request ret ry=n times before giving up. Once
the file system is mounted, each NFS request made in the
kernel waits timeo=n tenths of a second for a response. If
no response arrives, the timeout is multiplied by 2, and the
request is retransmitted. When retrans=n retransmissions
have been sent with no reply, a soft mounted file system re­
turns an error on the request, and a ha rd mounted file sys­
tem retries the request. File systems that are mounted rw
(read/write) should use the ha rd option. The number of
bytes in a read or write request can be set with the rsi ze
and wsize options.

-r Mount the specified file system read-only. This is a short­
hand for

mount -0 ro device-file mount-point

Physically write-protected and magnetic-tape file systems
must be mounted read-only, or errors will occur when access
times are updated, whether or not any explicit write is at­
tempted.

February, 1990 3
Revision C

mount(lM) mount(lM)

UMOUNT FLAG OPTIONS
The following flag options are interpreted for unmounting a file
system:

-h Unmount all file systems listed in /ete/mtab that are re­
motely mounted from host.

-a Attempts to unmount all the file systems currently mounted
(listed in / e t e / mt ab). In this case, device-file is taken
from / ete/mtab.

-v Provide verbose output; umount displays a message indicat­
ing the file system being unmounted.

EXAMPLES
mount /dev/dsk/eOdOs2 /usr

mounts a local disk.

mount -at 5.2

mounts all System V.2 file systems.

mount -t nfs serv:/usr/sre /usr/sre

mounts remote file system.

mount serv:/usr/sre /usr/sre

mounts remote file system.

mount -0 hard serv:/usr/sre /usr/sre

mounts remote file system, but with hard mount.

mount -p > /ete/fstab

saves current mount table state in / et e / f stab where it will
continue to be available to assist with the automatic mounting and
unmounting of file systems.

FILES
fete/mount
/ete/umount
/ete/mtab
/ete/fstab

SEE ALSO
mountd(lM), nfsd(1M), fsmount(2), unmount(2),
mount(3), umount(3), fstab(4), mtab(4).

4 February, 1990
Revision C

mount(lM) mount(1M)

BUGS
Mounting file systems full of garbage crashes the system.

If the directory on which a file system is to be mounted is a sym­
bolic link, the file system is mounted on the directory to which the
symbolic link refers, rather than is mounted on top of the symbolic
link itself.

February, 1990 5
Revision C

mountd(1M) mountd(1M)

NAME
mountd - NFS mount request server

SYNOPSIS
/usr/etc/rpc.mountd

DESCRIPTION
mountd is an RPC server that answers file system mount re­
quests. It reads the file / etc/ exports, described in ex­
ports(4), to determine which file systems are available to which
machines and users. It also provides information as to which
clients have file systems mounted. This information can be print­
ed using the showmount(1M) command.

The mountd daemon is normally invoked from
/etc/inittab.

FILES
/usr/etc/rpc.mountd

SEE ALSO

1

showmount(lM), exports(4), services(4), init­
tab(4).

February, 1990
RevisionC

named(IM) named(IM)

NAME
named - Internet domain name server

SYNOPSIS
named [-d debuglevel] [-p port#] [booifile]

DESCRIPTION
named is the Internet domain name server. Without any argu­
ments, named will read the default boot file
/ etc/named. boot, read any initial data and listen for queries.

Flag options are:

-d Print debugging infonnation. A number after the "d" deter­
mines the level of messages printed.

-p Use a different port number. The default is the standard port
number as listed in / etc/ services.

Any additional argument is taken as the name of the boot file. The
boot file contains infonnation about where the name server is to
get its initial data. The following is a small example:

boot file for name server

type domain source file or host

domain berkeley.edu
primary berkeley.edu named.db
secondary cc.berkeley.edu 10.2.0.78 128.32.0.10
cache named.ca

The first line specifies that "berkeley. edu" is the domain for
which the server is authoritative. The second line states that the
file "named. db" contains authoritative data for the domain
"berkeley. edu." The file "named. db" contains data in the
master file fonnat described in RFC883 except that all domain
names are relative to the origin; in this case, "berkeley. edu"
(see below for a more detailed description). The second line
specifies that all authoritative data under
"cc.berkeley.edu" is to be transferred from the name
server at 10.2.0.78. If the transfer fails it will try 128.32.0.10 and
continue trying the address, up to 10, listed on this line. The
secondary copy is also authoritative for the specified domain. The
fourth line specifies data in "named. ca" is to be placed in the
cache (like well known data such as locations of root domain

February, 1990 1
Revision C

named(IM) named(IM)

servers). The file "named. ca H is in the same format as
"named. db."

The master file consists of entries of the form:

$INCLUDE ~e~>
$ORIGIN <domain>
<domain> <opt _ttl> <opt_class> <type> <resource_record _data>

where domain is "." for root, "@" for the current origin, or a
standard domain name. If domain is a standard domain name that
does not end with ".", the current origin is appended to the
domain. Domain names ending with "." are unmodified. The
opt _ttl field is an optional integer number for the time-to-live field.
It defaults to zero. The opt class field is the object address type;
currently only one type is supported, IN, for objects connected to
the DARPA Internet. The type field is one of the following tokens;
the data expected in the resource record data field is in
parentheses. - -

A a host address (dotted quad)

NS

MX

CNAME

SOA

MB

MG

MR

NULL

WKS

PTR

HINFO

MINFO

an authoritative name server (domain)

a mail exchanger (domain)

the canonical name for an alias (domain)

marks the start of a zone of authority (5 numbers)

a mailbox domain name (domain)

a mail group member (domain)

a mail rename domain name (domain)

a null resource record (no format or data)

a well know service description (not implemented
yet)

a domain name pointer (domain)

host information (cpu_type OS _type)

mailbox or mail list information (requesCdomain
error_domain)

NOTES

2

The following signals have the specified effect when sent to the
server process using the kill(l) command.

February, 1990
RevisionC

named(IM)

SIGHUP

SIGINT

SIGUSRl

SIGUSR2

FILES

named(lM)

Causes server to read named. boot and reload
database.

Dumps current data base and cache to
/usr/tmp/named_dump.db

Turns on debugging; each SIGUSRl increments
debug level.

Turns off debugging completely.

jete/named
/ete/named.boot name server configuration boot

file
/ete/named.pid the process ID
/usr/tmp/named. run debug output
/ us r / tmp / named dump. db dump of the name servers data-

- base

SEE ALSO
kill(l), gethostbyname(3N), signal(3), resol ver(3),
resol ver(4).

February, 1990
Revision C

3

ncheck(IM) ncheck(IM)

NAME
ncheck -locate the filename associated with an i-node

SYNOPSIS
/ etc/ncheck [-a] [-i i-node-numbers] [-s] [-Tfile-system­
type] [file-system]

DESCRIPTION
ncheck with no argument generates a pathname and i-node list
of all files on a set of default file systems. Names of directory files
are followed by / .. The -i option reduces the report to only
those files whose i-nodes follow. The -a option allows printing of
the names . and .. , which are ordinarily suppressed. The -s op­
tion reduces the report to special files and files with set-user-ID
mode; it is intended to discover concealed violations of security
policy.

The -T flag option indicates the file-system type, for example,
4.2 or 5.2. If this option is not present, ncheck attempts to
determine the file-sytem type.

A file system may be specified.

EXAMPLE
ncheck /dev/rdsk/cOdOsO

reports the pathnames and i-nodes of files on the specified device.

BUGS
The report is in no useful order and probably should be sorted.

FILES
/etc/ncheck

SEE ALSO
fs(4), fsck(IM), sart(1).

DIAGNOSTICS
When the file-system structure is improper, ? ? denotes the
"parent" of a parentless file, and a pathname beginning with
... denotes a loop.

1 February, 1990
Revision C

ncstats(lM) ncstats(lM)

NAME
ncstats - display kernel name cache statistics

SYNOPSIS
ncstats

DESCRIPTION
ncstats prints the contents of the kernel's name cache statistics
structure, giving the number and percentage of each event. The
statistics kept are:

number of cache hits
number of cache misses

hits
misses
long_enter number of attempts to enter a long name (more

than 32 bytes) in the cache
long_look
lru_empty
purges

number of attempts to look up a long name
number of times the LRU list was empty
number of times the entire cache was purged

EXAMPLE
ncstats

results in output similar to:

Directory name
hits:
misses:
long_enter:
long_look:
lru_empty:
purges:

FILES
/etc/ncstats

BUGS

cache statistics:
140144 (72%)

53250 (28%)
1078 (1%)
1126 (1%)

o (0%)
2471 (1%)

The percentages given don't always add up to 100%.

February, 1990
RevisionC

1

newaliases(IM) newaliases(IM)

NAME
newaliases - rebuild the database for the mail aliases file

SYNOPSIS
newaliases

DESCRIPTION
newaliases rebuilds the random access database for the mail
aliases file /usr/lib/aliases. It must be run each time
/usr/lib/aliases is changed in order for the change to take
effect

FILES
/usr/ucb/newaliases

SEE ALSO
aliases(4).

1 February, 1990
RevisionC

newconfig(1M) newconfig(1M)

NAME
newconfig - prepare and configure a new kernel

SYNOPSIS
/ etc/newconfig [-v] [nonet] [module] ... [nomodule] ...

DESCRIPTION
newconfig is an A/UX® shell script that invokes the necessary
commands to generate a new kernel. newconfig begins by cal­
ling newunix(IM) to install or remove the appropriate scripts
and driver object files needed by autoconfig(IM). newcon­
fig then invokes autoconfig to link the new kernel. The au­
toconfig scripts may ask the user for system options. Finally,
newconfig invokes the shell script / etc/ startup, which is
produced by autoconfig. / etc/ startup asks the user for
any additional system configuration information. The new
configuration does not take effect until the user reboots the sys­
tem.

newconfig interprets the following flag option:

-v Causes newconfig to display its commands as they are in-
voked and to invoke those commands verbosely.

The keyword nonet causes the removal of TCP/IP networking
capabilities.

Specification of module causes the named module to be configured
in the resulting kernel, while nomodule causes the named module
to be removed from the resulting kernel. The placeholder module
is case-insensitive. More than one module can be specified on the
command line. The modules listed below are supported by Ap­
ple®. Third-party vendors may provide additional modules.

appletalk
AppleTalk® networking capabilities that include both Local­
Talk™ and EtherTalk™.

bnet

nfs

B-NET (Berkeley Networking) TCP/IP capabilities.

Network file system (NFS) capabilities that automatically in­
clude B-NET.

debugger
A/UX kernel debugger support.

February, 1990 1
Revision C

newconfig(IM) newconf ig(1M)

2

slip
Serialline/intemet protocol (SL/IP) capabilities.

snd
Enable use of the Macintosh sound chip.

svfs
System V file system (SVFS) capabilities.

t c Enable use of the Apple Tape Backup 40SC device.

ufs
Berkeley 4.2 file system (UPS) capabilities.

The following modules are usually included in conjunction with
another module and are indirectly installed in or removed from the
system. Normally, these modules are not explicitly specified by
the user.

ae6
Apple EtherTalk Interface Card driver.

at atp
- AppleTalk ATP (AppleTalk Transaction Protocol) driver.

atyapd
AppleTalk PAP (Printer Access Protocol) driver.

at sig
- AppleTalk driver.

atp
AppleTalk driver.

bnet dr
B-:NET sockets code.

ddp
AppleTalk DDP (Datagram Delivery Protocol) driver.

elap
EtherTalk LAP (Link Access Protocol) driver.

llap
LocalTalk LAP driver.

nfs dr
Network file system (NFS) driver.

slots
Enable calling the Slot Library.

February, 1990
RevisionC

neweonfig(1M) neweonfig(IM)

toolbox
NUX user interface device driver.

EXAMPLES
To prepare a kernel for TCP/IP services with NFS and AppleTalk
networking services, type

/ete/neweonfig nfs appletalk

To prepare a kernel that supports basic TCP/IP services, Ap­
pleTalk networking, the Macintosh sound chip, and Apple Tape
Backup 40SC device, type

/ete/neweonfig bnet appletalk snd te

To prepare a kernel from which all networking services are re­
moved, type

/ete/neweonfig nonet noappletalk

FILES
/ete/newunix
/ete/autoeonfig

A shell script called by neweonfig
An executable utility called by
neweonfig

fete/startup

SEE ALSO

A shell script created by autoeonfig

newunix(lM), autoeonfig(lM).

February,1990 3
Revision C

newfs(lM) newfs(lM)

NAME
newfs - construct a new UPS file system

SYNOPSIS
/ete/newfs [-v] [options] device-file

DESCRIPTION

1

newfs constructs a Berkeley 4.2 file system (UPS) on device-file,
which is the device-file on which the new file system is to be
created. The placeholder type indicates the disk type; this type is
used to find the appropriate disk name entry in / ete/ disktab.
The newf s command consults the disk label for disk partition in­
formation and /ete/disktab for disk architecture information,
calculates the appropriate parameters to use in calling mkfs, and
then builds the file system by invoking mkfs.

If the -v option is supplied, newf s prints out its actions, includ­
ing the parameters passed to mkfs.

newfs uses fsirand as a security precaution.

Options that may be used to override default parameters passed to
mkfs are:

-s size
Specify the size of the file system in sectors. If this option is
not present, the size information from the disk partition map
will be used. See dpme(4).

-b block-size
Specify the block size of the file system in bytes. The default
value is 4096.

- f Jrag-size
Specify the fragment size of the file system in bytes. The de­
fault value is 1024.

-t tracks-per-cylinder
Specify the number of tracks per cylinder, which is
equivalent to the number of heads on the disk drive. If this
option is not present, the information from
/etc/fs/ufs/disktab is used.

-c cylinders-per-group
Specify the number of cylinders per cylinder group in a file
system. The default value is 16.

-mJree-space
Specify the percentage of space reserved from use by normal

February, 1990
Revision C

newfs(IM) newfs(IM)

users. This value is known as the free-space threshold for
the file system. The default value is 10%. This value can be
changed later using tunefs(IM).

- r revolutions-per-minute
Specify the speed of the disk in revolutions per minute (usu­
ally 3600).

- i number of bytes per inode
Specify the density of inodes in the file system. The default
is to create an inode for each 2048 bytes of data space. If
few inodes are desired, a larger bytes-per-inode should be
specified. If many inodes are desired, a smaller bytes-per­
inode should be specified.

FILES
/etc/fs/ufs/newfs

Actually builds the file system.

SEE ALSO
dp(1M), fsck(1M), fsirand(IM), tunefs(lM), dpme(4),
disktab(4), ufs(4), gd(7).

February, 1990
Revision C

2

newunix(IM) newunix(IM)

NAME
newunix - prepare for new kernel configuration

SYNOPSIS
/ etc/newunix [[no]module] ...

DESCRIPfION
newunix is typically called by newconfig, but can also be
used directly. However called, it begins the process of configuring
a new kernel by installing (or removing) the appropriate scripts
and driver object files needed by autoconfig. When you in­
voke it directly, you should run autoconfig afterwards to com­
plete the kernel-configuration process. When you invoke it in­
directly by running newconfig, autoconfig is called au­
tomatically, making newconfig easier to use.

The configuration of the new kernel is controlled by the arguments
of module. Multiple invocations of newunix can be used to ac­
cumulate the new kernel configuration or to remove previously es­
tablished modules through the argument format of nomodule (a
couple of exceptions are noted in the following).

Possible values of module are:

appletalk Provide AppleTalk® support.

bnet

nfs

slip

tc

Use basic networking. To tum off basic
networking, use nonet rather than the ex­
pected nobnet.

Use the network file system (NFS). To
tum off NFS support, use nonet rather
than the expected nonfs.

Provide support for the Serial
Line/lnternet Protocol (SLIIP).

Provide support for the Apple® Tape
Backup 40SC device.

toolbox

EXAMPLES

Use the NUX® Toolbox.

1

To prepare the system for an NFS kernel, enter

/etc/newunix nfs

To prepare the system for a kernel that supports the tape controll­
er, enter

/etc/newunix tc

February, 1990
Revision C

newunix (1M) newunix (1M)

If, after requesting tape controller support, you decide to remove
it, enter

/ete/newunix note

The three preceding examples can also be considered one example
of staging a new kernel configuration, where the last two module
requested, te and note, canceled each other out

To proceed with the building of a new kernel for the currently ac­
cumulated configuration, run autoeonfig as follows:

autoeonfig -I -S fete/startup

See autoeonfig(IM) for complete details on running auto­
eonfig. See neweonfig(IM) for a more automatic way of
preparing a new kernel configuartion.

FILES
/ete/boot.d/*
/ete/install.d/*
/ete/master.d/*
/ete/startup.d/*
/ete/uninstall.d/*
/ete/init.d/*

SEE ALSO

Driver object files
Installation scripts
Script files
Startup programs
Removal scripts
Initialization scripts

autoeonfig(1M), finstall(IM), neweonfig(IM).

"Installing and Administering AppleTalk," in AIUX Local System
Administration.

February, 1990
RevisionC

2

nfsd(lM) nfsd(lM)

NAME
nfsd, biod-NFS daemons

SYNOPSIS
/ete/nfsd [nserver ...]

/ete/biod [nserver ...]

DESCRIPTION
nfsd starts the NFS server daemons that handle client file system
requests. nservers is the nwnber of file system request daemons to
start. This number should be based on the load expected on this
server; four is a good number. If nservers is not specified it de­
faults to one.

biod starts nservers asynchronous block I/O daemons. This
command is used on a NFS client to handle read-ahead and write­
behind of buffer cached blocks. A good value for nservers is four;
if not specified it defaults to one.

FILES
/ete/nfsd
/ete/biod

SEE ALSO
mountd(lM), exports(4).

1 February, 1990
RevisionC

nfsstat(IM) nfsstat{lM)

NAME
nfsstat - Network File System statistics

SYNOPSIS
nfsstat [-csnrz]

DESCRIPTION
nfsstat displays statistical information about the Network File
System (NFS) and Remote Procedure Call (RPC) interfaces to the
kernel. It can also be used to reinitialize this information. If no
flag options are given, the default is

nfsstat -csnr

That is, print everything and reinitialize nothing.

FLAG OPTIONS
The following flag options are interpreted by n f sst at:

-c Display client information. Only the client side NFS and
RPC information will be printed. Can be combined with the
-n and -r flag options to print client NFS or client RPC in­
formation only.

-s Display server information. Works like the -c flag option
above.

-n Display NFS information. NFS information for both the
client and server side will be printed. Can be combined with
the -c and -s flag options to print client or server NFS infor­
mation only.

-r Display RPC information. Works like the -n flag option
above.

-z Zero (reinitialize) statistics. Can be combined with any of
the above flag options to zero particular sets of statistics after
printing them. The user must have write permission on
/ dev / kmem for this flag option to work.

FILES
/usr/etc/nfsstat
/ unix system namelist
/dev/kmem kernclmemory

February, 1990
Revision C

1

nulladm(1M)

See acctsh{lM)

1

nulladm(1M)

February, 1990
RevisionC

pac(lM) pac(lM)

NAME
pac - gathers printer/plotter accounting information

SYNOPSIS
/ etc/pac [-Pprinter] [-pprice] [-s] [-r] [-c] [-m]
[name] ...

DESCRIPTION
pac reads the printer/plotter accounting files, accumulating the
number of pages (the usual case) or feet (for raster devices) of pa­
per consumed by each user, and printing out how much each user
consumed in pages or feet and dollars. If any names are specified,
then statistics are only printed for those users; usually, statistics
are printed for every user who has used any paper.

FLAG OPTIONS
The following flag options are interpreted by pac:

-Pprinter
Does accounting for the named printer. Normally, account­
ing is done for the default printer (site-dependent) or the
value of the environment variable PRINTER is used.

-pprice
Uses the value price for the cost in dollars instead of the de­
fault value of 0.02 or the price specified in
/etc/printcap.

-c Sorts the output by cost. Usually the output is sorted alpha­
betically by name.

-r Reverses the sorting order.

-s Summarizes the accounting information on the summary ac-
counting file. This summarizing is necessary because the ac­
counting file can grow by several lines per day on a busy sys­
tem.

-m Ignores the host name in the accounting file so a user on mul­
tiple machines can have all of his or her printing charges
grouped together.

FILES
/usr/adm/?acct
/usr/adm/? sum
/etc/printcap

February, 1990
Revision C

Raw accounting files
Summary accounting files
Printer-capability database

1

pac(1M)

SEE ALSO
printcap(4).

BUGS

pac(IM)

The relationship between the computed price and reality is as yet
unknown.

2 February, 1990
RevisionC

ping(lM) ping(lM)

NAME
ping - exercise the network by sending test packets to a named
host

SYNOPSIS
/usr / etc/ping host [timeout]

DESCRIPTION
ping repeatedly sends an icmp echo packet to host and reports
whether or not a reply was received. It keeps trying until timeout
seconds have elapsed, or an answer is received. The default
timeout is 20 seconds. The host argument can be a name or an in­
ternet address.

ping continues to send icmp echo packets to host and reports
back until the process is killed. Use the interrupt character (usual­
ly CONTROL-C) to stop the output of ping once the packets are
being returned. ping then prints statistics and exits.

FILES
/usr/etc/ping

SEE ALSO
icmp(5P).

February, 1990
Revision C

1

pname(IM) pname(IM)

NAME
pname - associate named partitions with device files

SYNOPSIS
/bin/pname [-a] [-c controller] [-d disk] [-s slice] [-t type]
name

/bin/pname [-p]

/bin/pname -a[v]

/bin/pname -u device-file [device-file ...]

DESCRIPTION
pname enables the system to recognize the partition with name
name. The partition, name, must already exist (for creating parti­
tions see dp(IM) and the description of HD SC Setup in AIUX Lo­
cal System Administration).

pname maintains a table of partitions it has recognized in
/ etc/ptab, described in ptab(4). If invoked without an argu­
ment, pname displays all the partitions it has recognized in terms
of the device files in / dev / rds k.

When pname is invoked without an argument certain slices may
not be reported as recognized, but can be honored nevertheless.
This is the case when the associated partitions are named Root or
Root&Usr (both on slice 0), Swap (on slice 1), or Usr (on slice
2) and when they are referenced appropriately as one of the fol­
lowing device files:

/dev/dsk/cndOsO
/dev/dsk/cndOsl
/dev/dsk/cndOs2

When invoked to recognize a specific partition, pname writes to
standard output the pathname of the device file that has been asso­
ciated with the specified partition.

FLAG OPTIONS

1

The following flag options are interpreted by pname:

-p Prints the list of recognized partitions in a format suitable for
use in / etc/ptab.

- a This option takes on two different meanings dependent upon
the command usage. If pname is invoked with a partition
name, this option will cause an entry (if one is not already
present) for the partition to be added to / etc/ptab. If no

February, 1990
RevisionC

pname(lM) pname(lM)

partition name is specified, pname will attempt to recognize
all the partitions described in / etc/ptab. (In this case,
name, type, controller, disk, and slice are taken from
/ etc/ptab.) Partitions are recognized in the order listed
in / etc/ptab.

-v Verbose: pname displays a message indicating that the par­
tition is being recognized.

-c This option is used to specify that this partition, name, resides
on controller number controller. If this option isn't specified,
pname will assume the controller number is zero.

-d This option is used to specify that the partition, name, resides
on disk number disk. If this option isn't specified, pname
will assume the disk number is zero.

-s This option is used to specify slice as the number by which
the partition, name, will be recognized. If this option isn't
specified, pname will choose an unused slice number. If the
device corresponding to the slice number does not exist and
the controller and disk numbers are valid, the device will be
created in / dev / dsk and / dev / rdsk.

-t If this option is specified, type will be used as the type of the
partition, instead of the default, Apple_uNIx _ SVR2.

-u This option will cause pname to disassociate partitions with
the specified devices.

EXAMPLES
pname -a recognize all partitions

pname -cl "PeterC's part" recognize named parti­
tion on controller 1

pname -p > /tmp/pstate

FILES
/bin/pname
/etc/ptab
/dev/dsk/c[O-7]d[O-7]s*
/dev/rdsk/c[O-7]d[O-7]s*

SEE ALSO

save current partition
state

dp(lM), mknod(lM), getptabent(3), ptab(4).

February,1990
Revision C

2

pname(IM) pname(IM)

WARNINGS
Some of the actions that may be performed by pname require
read and write permission on certain directories and certain files
that may not be readable or writable to all users. For example,
when invoked to display a list of all recognized partitions, pname
will silently ignore all partitions associated with devices that are
not readable to the user that invoked pname.

BUGS

3

The current revision of the software will not support colons (:) in
partition names or partition types.

February, 1990
Revision C

portmap(1M) portmap(IM)

NAME
portmap - DARPA port to RPC program number mapper

SYNOPSIS
/etc/portmap

DESCRIPTION
portmap is a server that converts RPC program numbers into
DARPA protocol port numbers. It must be running in order to
make RPC calls.

When an RPC server is started, it will tell po rtma p what port
number it is listening to, and what RPC program numbers it is
prepared to serve. When a client wishes to make an RPC call to a
given program number, it will first contact portmap on the
server machine to determine the port number where RPC packets
should be sent.

Normally, standard RPC servers are started from
/etc/inittab.

FILES
/etc/portmap

SEE ALSO
rpcinfo(1M).

BUGS
If portmap crashes, all servers must be restarted.

February, 1990
Revision C

1

powerdown(lM} powerdown(1M}

NAME
powe rdown - power down the system

SYNOPSIS
/etc/powerdown

DESCRIPTION
powe rdown flushes the internal system buffers and powers down
the machine.

FILES
/etc/powerdown

SEE ALSO
shutdown(IM}, reboot(1M}.

1 February, 1990
Revision C

powerfail(lM)

February, 1990
Revision C

See brc(lM)

powerfail(lM)

1

prctmp(lM)

See acctsh(lM)

1

prctmp(lM)

February, 1990
RevisionC

prdaily(1M)

February, 1990
Revision C

See acctsh(lM)

prdaily(IM)

1

prtacct(IM)

See acctsh(IM)

1

prtacct(1M)

February, 1990
RevisionC

psbanner(1M) psbanner(1M)

See transcript(lM)

February, 1990 1
Revision C

pscomm(IM)

See transcript(IM)

1

pscomm(IM)

February, 1990
RevisionC

psinterface(1M) psinterface(1M)

See transcript(1M)

February, 1990 1
Revision C

psrv(IM)

See transcript(1M)

1

psrv(IM)

February, 1990
Revision C

pstat(lM) pstat(lM)

NAME
pstat - print system facts

SYNOPSIS
pstat [-p [-a]] [-b] [-i] [-m] [-nnamelist] [-rrate] [-t]
[-uaddress] [-v [file]

DESCRIPTION
pstat interprets the contents of certain system tables. If file is
given, the tables are sought there, otherwise in / dev / kmem. Un­
less the -n flag option is used, the required namelist is taken from
/unix.

FLAG OPTIONS
The following flag options are interpreted by pstat:

-a Under -p, describe all process slots rather than just active
ones.

-b Print the system I/O buffer header information with the fol­
lowing headings:

LOC The core location of the buffer header

FLAGS Miscellaneous state variables encoded thus:

R The buffer is to be read.

W The buffer is to be written.

D The I/O is done.

E An error occurred during the I/O operation of the
buffer.

B The buffer is busy.

P The buffer is being used for physical (raw) I/O.
M The buffer has map space allocated (not all

machines).

w A process wants to access the buffer and is wait­
ing for it.

A The buffer has aged.

Y The buffer is doing an asynchronous operation
(the process that started the I/O does not wait for
it to complete).

L The buffer contents have changed, and they need
to be written out before the buffer can be reallo-

February, 1990 1
Revision C

pstat(1M) pstat(IM)

cated.

o The open routine has been called for this device.

S The buffer is "stale."

DEVICE The major and minor device numbers for the
device to which the buffer is queued (or con­
tains information from)

ADDR The core address of the data in the buffer

BLKNO The block number of the block on DEVICE.

-f Print the open file table with these headings:

LOC The core location of this table entry

FLG Miscellaneous state variables encoded thus:

R Open for reading

w Open for writing

P Pipe

CNT Number of processes that know this open file

INO The location of the inode table entry for this file

OFFS The file offset (see lseek(2»

-i Print the inode table with these headings:

LOC The core location of this table entry

FLAGS Miscellaneous state variables encoded thus:

L Locked.

u The update time fs(4) must be corrected.

A The access time must be corrected.

M The file system is mounted here.

w Wanted by another process (L flag is on).

T Contains a text file.

C Changed time must be corrected.

CNT Number of open file table entries for this inode

DEVICE Major and minor device number of file system
in which this inode resides

2 February, 1990
RevisionC

pstat(lM) pstat(lM)

INa Inumber within the device

MODE Mode bits (see chmod(2»

NLK Number of links to this inode

UID User ID of owner

SIZ/DEV Number of bytes in an ordinary file, or major
and minor device of device-file

LOCK Address of the locldist structure for this inode

-m Print information about core memory allocation and a dump
of the memory free map with these headings:

LaC The core address of the map entry

ADDR

SIZE

-nnamelist

The "click" address of the area this entry
refers to

The size of this area in "clicks"

Specify a namelist (system code file) other than the default
of /unix.

-p Print the process table for active processes with these head­
ings:

LaC The core location of this table entry

S

F

. February, 1990
Revision C

0

1

2

3

4

5

6

7

0

1

Run state encoded thus:

No process

Waiting for some event

Runnable

Being terminated

Stopped under trace

Being created

Running

Being xswapped

Flags (octal and additive) associated with the
process:

Swapped

System process

3

pstat(IM) pstat(IM)

4

2 Being traced by another process

4 Another tracing flag

1 0 Process cannot be woken by a signal

20 In core

40 Locked in memory

PRI Scheduling priority (see nice(2»

SIGNAL

UID

TIM

CPU

NI

PGRP

PID

PPID

ADDR

SIZE

WCHAN

LINK

CLKT

Signals received (signals 1-16 coded in bits 0-
15)

Real user ID

Time resident in seconds; times over 127 coded
as 127

Weighted integral of CPU time, for scheduler

Nice level (see ni ce (2))

Process number of root of process group (the
opener of the controlling terminal)

The process ID number

The process ID of parent process

If in core, the physical address of the page
tables in the proc structure for the "u-area" of
the process; if swapped out, the position in the
swap area measured in multiples of 512 bytes

Size of process image in multiples of logical
page size

Wait channel number of a waiting process

Link pointer in list of runnable processes

Countdown for alarm(2) measured in seconds

-r Make the execution of pstat repeat at a rate defined by the
next parameter.

-t Print the table for terminals with these headings:

LOC Core location of this table entry

February, 1990
Revision C

pstat(lM)

RAW

CAN

OUT

PROC

IFLAG

OFLAG

CFLAG

LFLAG

STATE

PGRP

LN

DEL

February, 1990
RevisionC

pstat(IM)

Number of characters in raw input queue

Number of characters in canonicalized input
queue

Number of characters in output queue

Core location of the proc routine

Input modes (see termio(7))

Output modes (see termio(7))

Control modes (see termio(7))

Line discipline modes (see termio(7))

Internal state:

00000001 Delay timeout in progress. TIMEOUT

WOPEN

ISOPEN

TBLOCK

CARR ON

BUSY

OASLP

IASLP

TTSTOP

EXTPROC

TACT

CLESC

RTO

TTIOW

TTXON

TTXOFF

TS RCOLL

TS WCOLL

TS NBIO

TS ASYNC

TS STOP

00000OO2 Waiting for open to complete.

00000OO4 Device is open.

00000010

00000020

00000040

00000100

00000200

00000400

00001000

00002000

00004000

00010000

00020000

000400OO
00100000

00200000

004000OO
01000000

02000000

04000000

Software copy of carrier-present.

Output in progress.

Wake-up when output done.

Wake-up when input done.

Output stopped by CONTROL-So

External processing.

Last char escape.

Collision in read select.

Collision in write select.

Tty in non-blocking mode.

Tty in async I/O mode.

Block background output.

Process group for which this is controlling termi­
nal

Line discipline

Number of delimiters (newlines) in canonicalized
input queue

5

pstat(lM) pstat(lM)

COL

ROW

IX

Calculated column position of terminal

Calculated row position of terminal

Index to the table of core locations

-u Print information about a user process. The next argument is
its address as given by ps(1). The process must be in main
memory, or the file used can be a core image and the address
o.

-v Cause a number of the other flag options to give a more ver­
bose output Often this means that they list table entries that
are not currently active or in use.

EXAMPLE
pstat -i

displays all the active inodes in a table format with headings.

FILES
/bin/pstat
/unix
/dev/kmem

SEE ALSO

Namelist
Default source of tables

ps(l), stat(2), fs(4).

A/UX Local System Administration.

6 February, 1990
RevisionC

pstext(IM) pstext(IM)

See transcript(1M)

February, 1990 1
Revision C

pwck(lM) pwck(lM)

NAME
pwck, grpck - password/group file checkers

SYNOPSIS
/ etc/pwck [file]
/ etc/ grpck [file]

DESCRIPTION
pwck scans the password file and notes any inconsistencies. The
checks include validation of the number of fields, login name, user
ID, group ID, and whether the login directory and optional pro­
gram name exist. The default password file is / etc / pa s s wd.

grpck verifies all entries in the group file. This verification in­
cludes a check of the number of fields, group name, group ID, and
whether all login names appear in the password file. The default
group file is /etc/group.

EXAMPLES
pwck

lists inconsistencies in /etc/passwd.

grpck

lists inconsistencies in / etc/ group.

FILES
/etc/pwck
/etc/group
/etc/passwd

SEE ALSO
group(4), passwd(4).

DIAGNOSTICS
Group entries in / etc/ group with no login names are flagged.

1 February, 1990
RevisionC

rc(IM)

February, 1990
Revision C

See brc(IM)

rc(IM)

1

rdump(IM)

See dump. bsd(IM)

1

rdump(IM)

February, 1990
Revision C

reboot(lM) reboot(lM)

NAME
reboot - reboot the operating system

SYNOPSIS
fete/reboot [-h] [-1] [-n] [-q]

DESCRIPTION
By default, reboot causes the disks to terminate processes (us­
ing the syne command) and filesystems to be unmounted. A sys­
tem restart is then initiated. Only the super-user may reboot a
machine.

FLAG OPTIONS
The flag options to reboot are:

-h Halt the system and do not restart the processor.

-n Avoids the sync. It can be used if a disk is on fire.

-q Reboots quickly and ungracefully, without shutting down
running processes first.

-1 Disable system logging.

reboot normally logs the reboot using sys1og(lM) and places
a shutdown record in the login accounting file
/usr/adm/wtmp. These actions are inhibited if the -n or-q
options are present.

SEE ALSO
shutdown(lM), sys1ogd(lM), reboot(2), 1auneh(8).

February, 1990 1
Revision C

reject(IM) reject(IM)

NAME
re j ect - prevent LP requests

SYNOPSIS
/usr/lib/reject [-r [reason]] [destination ...]

DESCRIPTION
reject prevents Ip(1) from accepting requests for the named
destinations. Use Ipstat(l) to find the status of destinations.

destination

-r[reason]

either a printer or a class of printers.

Associates a reason for preventing 1 p from
accepting requests. This reason applies to
all printers mentioned up to the next -r op­
tion. Ip reports the reason when users
direct requests to the named destinations or
use Ipstat(1). If you don't use the -r op­
tion or if you give -r without a reason, then
a default reason is used.

FILES
/usr/lib/reject
/usr/spool/lp/*

SEE ALSO
enable(1), Ip(I), Ipstat(I), accept(IM),
Ipadmin(IM), Ipsched(1M).

1 February, 1990
Revision C

remshd(lM) remshd(lM)

NAME
rems hd - remote shell server

SYNOPSIS
/ etc/ in. remshd host . port

DESCRIPTION
remshd is the server for the rcmd(3N) routine and, consequent­
ly, for remsh(1N). remshd is started by inetd, see
inetd(1M). The server provides remote execution facilities with
authentication based on privileged port numbers.

remshd listens for service requests at the port indicated in the
cmd service specification; see services(4N). When remshd
receives a service request, it initiates the following protocol:

1. remshd checks the client's source port. If the port is not in
the range 0-1023, it aborts the connection. The client's host
address (in hex) and port number (in decimal) are the argu­
ments passed to remshd.

2. remshd reads characters from the socket up to a null ("\0")
byte. It interprets the resultant string as an ASCII number,
base 10.

3. If remshd receives a port number (in step 1) which is non­
zero, it interprets it as the port number of a secondary stream
to use for the stderr. It then creates a second connection to
the specified port on the client's machine. The source port of
this second connection is also in the range 0-1023.

4. rems hd checks the client's source address. If the address is
associated with a host which has no corresponding entry in the
host name data base (see hosts(4N»), remshd aborts the
connection.

S. remshd retrieves a null-terminated user name up to 16 char­
acters long on the initial socket. It interprets this user name as
a user identity to use on the server's machine.

6. remshd retrieves a null-terminated user name up to 16 char­
acters long on the initial socket. It interprets this user name as
the user identity on the client's machine.

7. remshd retrieves a null-tenninated command on the initial
socket to passed to a shell. The length of the command is lim­
ited by the size of the system's argument list.

February, 1990
Revision C

1

remshd(IM) remshd(IM)

8. remshd validates the user according to the following steps. It
looks up the remote user name in the password file and per­
forms a chdir to the user's home directory. If either the
lookup or chdi r fail, it terminates the connection. If the user
is not the superuser, (user ill 0), it consults the file
/ etc/hosts. equi v for a list of "equivalent" hosts. If the
client's host name is in this file, the authentication is con­
sidered successful. If the lookup fails, or the user is the su­
peruser, it checks the file. rhosts in the home directory of
the remote user for the machine name and identity of the user
on the client's machine. If this lookup fails, it terminates the
connection.

9. remshd returns a null byte on the connection associated with
the stderr and passes the command line to the normal login
shell of the user. The shell inherits the network connections es­
tablished by remshd.

DIAGNOSTICS

2

remshd returns all diagnostic messages on the connection associ­
ated with the stderr, after which it closes any network connec­
tions. It indicates an error by a leading byte with a value of 1 (it
returns 0 in step 9 above if it has successfully completed all the
steps up to command execution).

locuser too long
The name of the user on the client's machine is longer than 16
characters.

remuser too long
The name of the user on the remote machine. is longer than 16
characters.

command too long
The command line passed exceeds the size of the argument list (as
configured into the system).

Hostname for your address unknown.
There is no entry in the host name database for the client's
machine.

Login incorrect.
There is no password file entry for the user name.

No remote directory.
The chdi r command to the home directory failed.

February, 1990
Revision C

remshd(lM) remshd(lM)

Permission denied.
The authentication procedure described above failed.

Can't make pipe.
The pipe needed for the stderr, wasn't created.

Try again.
A fork by the server failed.

/bin/ sh: ...
Could not start the user's login shell.

FILES
/etc/in.remshd

SEE ALSO
remsh(lN), inetd(1M), rcmd(3N).

BUGS
The authentication procedure used here assumes the integrity of
each client machine and the connecting medium. This is insecure,
but is useful in an "open" environment.

There should be a facility allowing all data exchanges to be en­
crypted.

February, 1990
Revision C

3

restore(1M) restore(lM)

NAME
restore - copy files from a dump. bsd archive into an
existing file system

SYNOPSIS
/ etc/ restore [-0] [-Tfile-system-type] key [argument] .. .
/ etc/ rrestore [-0] [-Tfile-system-type] key [argument] .. .

DESCRIPTION

1

restore and rrestore recover files from a backup created
with the . dump . bsd(lM) and rdump commands, respectively.
r re s tore allows the use of a remotely connected backup dev­
ice.

The -T option indicates the file sytem type, which can be either
4.2 or 5.2. The -0 option indicates that restore or rre­
store should assume that the backup medium contains an SVFS
backup. If neither of these options is present, the type is assumed
to be 5.2.

The actions of both commands are controlled by the key argument,
which is a string of characters containing, at most, one function
letter and possibly one or more function modifiers. The function
letter consists of one or more characters from the set irRstx.
An especially useful function letter is i, which requests an in­
teractive restore session. The modifier consists of one or more
characters from the set bfhmsvy.

Each argument is a file or directory name specifying a file that is
to be restored. Sometimes an argument includes a value to be as­
sociated with a certain key. For example, b allows the
specification of a blocking-factor as one argument. An argument
for a key appears before any file or directory name, and
specifically identifies a file to be recovered. If there is more than
one key argument, then the arguments must be supplied in the
same order as the associated key.

Unless the h key is specified (as described later in this section),
the appearance of a directory name refers to the files and (recur­
sively) subdirectories of that directory.

restore can be used together with other file-system commands.
For example, see mkfs(lM) and dump. bsd(1M) to help resize a
file system or recreate the same file system with more or fewer
inodes to increase or decrease the number of files it can support.
Disk partitioning operations are probably necessary before resiz-

February, 1990
RevisionC

restore(1M) restore(1M)

ing a file system For an Apple® Hard Disk SC, use Apple HD SC
Setup, as described in AIUX Local System Administration.

The function portion of the key is specified by one of the follow­
ing letters:

r Read and load the backup media into the current directory.
This should not be done lightly; the r key should only be
used to restore a full dump backup onto an empty file sys­
tem, or to restore an incremental dump backup after a full
level zero restore. Thus

I ete/mkfs I dev I rdskl endOsy number-oj-blocks
lete/mount Idev/dsk/endOsy /ront
ed lront
restore r

is a typical sequence to restore a full dump. Another invo­
cation of restore may be used to overlay the contents of
an incremental dump over the full dump.

When used with the -r option, restore updates the file
restoresymtab in the root directory to accumulate in­
formation regarding the level of backups that have been
recovered for each file system. It should be removed when
you no longer need the tracking information, such as when
you have finished recovering from a full backup and all of
its associated incremental backups.

R Cause restore to request a particular volume of a mul­
tivolume set on which to restart a full restore (see the r key
previously described). This allows restore to be inter­
rupted and then restarted.

x Extract the named files from the backup. If the named file
matches a directory whose contents were written onto the
backup, and the h key is not specified, the directory is recur­
sively extracted. The owner, modification time, and mode
are restored, if possible. If no file argument is given, then
the root directory is extracted, which results in the entire
contents of the backup being extracted, unless the h key is
specified.

t List the names of the specified files if they occur on the
backup. If no file argument is given, then the root directory
is listed recursively, which results in the entire content of
the backup being listed, unless the h key is specified. Note

February, 1990
Revision C

2

restore(1M) restore(IM)

3

that the t key replaces the function of the old dumpdir
program.

i Allow interactive restoration of files from a dump backup.
After reading the directory information from the backup,
restore provides a shell-like interface that allows the
user to move around the directory tree and select files to be
extracted. The available commands are given next; for
those commands that require an argument, the default is the
current directory.

Is [arg]
List the current or specified directory. Entries that are
directories are appended with /. Entries that have
been marked for extraction are prefixed with *. If the
verbose key is set, the inode number of each entry is
also listed.

cd [arg]

pwd

Change the current working directory to the specified
argument

Print the full pathname of the current working directo­
ry.

add [arg]
Add the current directory, or arg files if specified, to
the list of files to be extracted. If arg includes a direc­
tory, then it and all its descendents are added to the ex­
traction list, unless the h key is specified on the com­
mand line. Files that are on the extraction list are
prefixed with * when they are listed by 1 s.

delete [arg]
The current directory, or arg files if specified, is delet­
ed from the list of files to be extracted. If arg includes
a directory, then it and all its descendents are deleted
from the extraction list (unless the h key is specified on
the command line). The most expedient way to extract
most of the files from a directory is to add the directory
to the extraction list and then delete those files that are
not needed.

extract
Extract from the dump backup all the files that are on

February, 1990
RevisionC

restore(1M) restore(1M)

the extraction list. restore asks which volume the
user wishes to mount. The fastest way to extract a few
files is to start with the last volume and work toward
the first volume.

setmodes
Set the owner, modes, and times of all the directories
that were added to the extraction list. Nothing is ex­
tracted from the backup. This is useful for cleaning up
after a restore is prematurely aborted.

verbose
The sense of the v key is toggled. When set, the ver­
bose key causes the 1 s command to list the inode
numbers of all entries. It also causes restore to
print out information about each file as it is extracted.

help
List a summary of the available commands.

quit
restore immediately exits, even if the extraction list
is not empty.

The following characters may be used in addition to the letter that
selects the function desired.

b Use the associated argument as the blocking-factor for the
records of the backup device, rather than the default
blocking-factor of 1. This option should only be used with
raw versions of device files.

The letters b, k, m, or f may be used at the end of the asso­
ciated argument to indicate a number of blocks, kilobytes,
megabytes, or feet, respectively.

Use 8 KB as the blocking-factor for the Apple Tape Backup
40SC. To restore the contents of a backup to the current
directory from the tape, substitute the SCSI ID number of
the tape drive for x and enter

restore -rbf 8k /dev/rmt/tcx

If the -b option is not specified, restore tries to deter­
mine the block size of the backup media dynamically.

f Read from the associated argument rather than the default
device file / dev /tape. If / etc/ rrestore is used, the

February, 1990 4
Revision C

restore(1M) restore(IM)

associated argument should include a reference to the name
of the remote system where the backup device is located. A
colon separates the remote-system name from the device
file, as in

/etc/rrestore -rbf 8k server:/dev/rmt/tc3

If the environmental shell variable TAPE is set and the f
option is not used, the value of TAPE is used as the device
file from which data is read If the argument associated
with f is -, re s tore reads from standard input Thus,
dump. bsd and restore can be used in a pipeline to du­
plicate a file system with the command

dump.bsd Of - /usr I (cd /mnt; restore xf -)

In this example, /usr is a mount point for another file sys­
tem.

F Eject the 3.5-inch disk from the floppy drive when finished.

v Cause restore, which normally does its work silently, to
type the name of each file it treats, preceded by its file type.

y Cause restore not to ask whether it should abort the re­
store if it gets a read or write error. Then restore always
tries to skip over the bad block(s) and continue as best it
can.

m Cause restore to extract by inode numbers rather than by
filename. This is useful if only a few files are being extract­
ed, and if regenerating the complete pathname to the file is
to be avoided.

h Cause re s tore to extract the actual directory rather than
the files that it references. This prevents hierarchical res­
toration of complete subtrees from the backup.

s Cause the associated restore argument, which is a
number, to select the file on a multifile dump backup. File
numbering starts at 1.

DIAGNOSTICS

5

Complaints about bad key characters.

Complaints if restore gets a read error. If y has been specified,
or the user responds y, restore attempts to continue the restore.

February, 1990
RevisionC

restore(1M) restore(1M)

If the dump extends over more than one volume, restore asks
the user to shuttle either tape or floppy volumes around. If the x
or i key is specified, restore also asks which volume the user
wishes to mount. The fastest way to extract a few files is to start
with the last volume and work toward the first volume.

There are numerous consistency checks that can be listed by
restore. Most checks are self-explanatory or can "never hap­
pen." Common errors are given below.

filename: not found on tape
The specified filename was listed in the directory of the
backup, but was not found on the backup. This is caused by
media read errors while looking for the file, and by recover­
ing data from a backup created on an active file system.

expected next file inumber, got inumber
A file that was not listed in the directory showed up. This
can occur when recovering from a backup created on an ac­
tive file system.

Incremental tape too low
When recovering files incrementally, the backups must be
copied back to primary storage in the correct order. This er­
ror can result when attempting to read from a backup that
should have been read prior to the previous incremental
backup.

Incremental tape too high
This error can result when attempting to read a backup
volume that does not begin its coverage where the previous
volume left off.

Tape read error while restoring filename
Read error occurred while skipping over an inode inumber.

Tape read error while trying to resynchronize
A read error has occurred. If a filename is specified, then its
contents are suspect. If an inode is being skipped or the
backup device is trying to resynchronize, then no extracted
files have been corrupted, though selected files may not be
recoverable.

resync restore, skipped num blocks
After a read error, restore may have to resynchronize it­
self. This message lists the number of blocks that were
skipped over.

February, 1990
Revision C

6

restore{IM) restore{IM)

FILES
Jete/restore
/dev/tape
/tmp/rstdir*

The default device file
File containing directories on the
backup

/tmp/rstmode*

./restoresymtable

Owner, mode, and time stamps for
directories
Information passed between incre­
mental restores

SEE ALSO
dump. bsd{IM), mkfs{IM), mount(1M), newfs{IM),
fstyp(2), fs(4).

BUGS

7

restore can get confused when doing incremental restores from
dump media produced while file systems were subject to
modification.

A full (level 0) dump must be done after a full restore. Because
re s tore runs in user mode, it has no control over inode alloca­
tion; thus a full restore must be done to get a new set of directories
reflecting the new inode numbering, even though the contents of
the files are unchanged.

February, 1990
Revision C

revnetgroup(1M) revnetgroup(IM)

NAME
revnetgroup - reverse the netgroup file

SYNOPSIS
/ etc/yp/ revnetgroup [-u] [-h]

DESCRIPTION
revnetgroup reverses the netgroup file. Options are

-u reverse by usemame

- h reverse by hostname

Each line in the output file will begin with a key formed by con­
catenating the host or user name with the domain name. The key
will be followed by a tab, then the comma-separated, newline­
terminated list of groups to which the user or host belongs.

Exception: Groups to which everyone belongs (universal groups)
will not be included in the list. The universal groups will be listed
under the special name *.

NOTE
revnetgroup is a filter used in updating the /etc/yp data­
bases. It is not expected to be of general utility.

FILES
/etc/yp/revnetgroup
/etc/netgroup

SEE ALSO
ypmake(1M), netgroup(4).

February, 1990
Revision C

1

rexecd(IM) rexecd(lM)

NAME
rexecd - remote execution server

SYNOPSIS
/usr/etc/in. rexecd host.port

DESCRIPTION

1

rexecd is the server for the rexec(3N) routine. The server pro­
vides remote execution facilities with authentication based on user
names and encrypted passwords.

rexecd listens for service requests at the port indicated in the
exec service specification; see services(4N). When it re­
ceives a service request, it initiates the following protocol:

1. The server reads characters from the socket up to a null ("\0")
byte. It interprets the resultant string as an ASCII number,
base 10.

2. If rexecd receives. a number (in step 1) which is non-zero, it
interprets it as the port number of a secondary stream to use
for the s t de r r. It then creates a second connection to the
specified port on the client's machine. The client's host ad­
dress (in hex) and port number (in decimal) are the arguments
passed to rexecd.

3. rexecd retrieves a null-terminated user name up to 16 char­
acters long on the initial socket.

4. rexecd retrieves a null-terminated, encrypted, password up
to 16 characters long on the initial socket.

5. rexecd retrieves a null-terminated command on the initial
socket to pass to a shell. The command length is limited by
the size of the system's argument list.

6. rexecd validates the user as is done at login time. -If the user
is authenticated, it changes to the user's home directory, and
establishes user and group protections. If any of these steps
fail, rexecd aborts the connection aborted and returns a diag­
nostic message.

7. rexecd returns a null byte on the connection associated with
the stderr and passes the command line to the normal login
shell of the user. The shell inherits the network connections
established by rexecd.

February, 1990
Revision C

rexecd(1M) rexecd(1M)

DIAGNOSTICS
rexecd returns all diagnostic messages on the connection associ­
ated with the stderr, after which it closes any network connec­
tions. It indicates an error by a leading byte with a value of 1 (it
returns 0 in step 7 above if it has successfully completed all the
steps up to command execution).

username too long
The name is longer than 16 characters.

password too long
The password is longer than 16 characters.

command too long
The command line passed exceeds the size of the argument list (as
configured into the system).

Login incorrect.
There is no password file entry for the user name.

Password incorrect.
You supplied the wrong password.

No remote directory.
The chdi r command to the home directory failed.

Try again.
A fork by the server failed.

/bin/sh: ...
Could not start the user's login shell.

FILES
/usr/etc/in.rexecd

BUGS
Indicating Login incorrect instead of Password in­
correct is a security breach which allows people to probe a sys­
tem for users with null passwords.

There should be a facility allowing all data exchanges to be en­
crypted.

February,1990
Revision C

2

rlogind(IM) rlogind(IM)

NAME
rlogind - remote login server

SYNOPSIS
fete/in. rlogind host.port

DESCRIPTION

1

rlogind is the server for the rlogin(lN) program. The server
provides a remote login facility with authentication based on
privileged port numbers.

rlogind listens for service requests at the port indicated in the
login service specification; see serviees(4N). When rlo­
gind receives a service request, it initiates the following proto­
col.

1. The server checks the client's source port. If the port is not in
the range 0-1023, the server aborts the connection. The
client's host address (in hex) and port number (in decimal) are
the arguments passed to rlogind.

2. The server checks the client's source address. If the address is
associated with a host that has no corresponding entry in the
host name database (see hosts(4N), the server aborts the
connection.

Once it has checked the source port and address, rlogind allo­
cates a pseudo terminal (see pty(7», and manipulates file
descriptors so that the slave half of the pseudo terminal becomes
the stdin, stdout, and stderr for a login process. The login
process is an instance of the login(l) program, invoked with the
- r flag option. The login process then proceeds with authentica­
tion, as described in remshd(IM). If automatic authentication
fails, it reprompts the user to login, as on a standard terminal line.

The parent of the login process manipulates the master side of the
pseudo terminal, operating as an intermediary between the login
process and the client instance of the rlogin program. In nor­
mal operation, the packet protocol described in pt y(7) is invoked
to provide CONTROL-S/CONTROL-D type facilities and propagate
interrupt signals to the remote programs. The login process pro­
pagates the client terminal's baud rate and terminal type, as found
in the environment variable, TERM; (see environ(5».

February, 1990
RevisionC

rlogind(1M) rlogind(1M)

DIAGNOSTICS
rlogind returns all diagnostic messages on the connection asso­
ciated with the stderr, after which it closes any network con­
nections. It indicates an error by a leading byte with a value of 1.

Hostname for your address unknown.

There is no entry in the host name database for the client's
machine.

Try again.

A fork by the server failed.

/bin/sh: ...

Could not start the user's login shell.

FILES
/etc/in.rlogind

BUGS
The authentication procedure used here assumes the integrity of
each client machine and the connecting medium. This is insecure,
but is useful in an "open" environment.

February,1990 2
Revision C

route(IM) route(IM)

NAME
route - manually manipulate the routing tables

SYNOPSIS
/ etc/ route [-f] [-n] [command [netlhost] destination
gateway [metric]

DESCRIPTION

1

route is a program used to manually manipulate the network
routing tables. It normally is not needed, as the system routing
table management daemon, routed(1M), should tend to this
task.

route accepts two commands: add, to add a route, and
delete, to delete a route.

destination is the destination host or network, gateway is the
next-hop gateway to which packets should be addressed, and
metric is a count indicating the number of hops to the destination.
The metric is required for add commands; it must be zero if the
destination is on a directly-attached network, and nonzero if the
route utilizes one or more gateways. If adding a route with metric
0, the gateway given is the address of this host on the common
network, indicating the interface to be used for transmission.
Routes to a particular host are distinguished from those to a net­
work by interpreting the Internet address associated with destina­
tion. The optional keywords net and host force the destination
to be interpreted as a network or a host, respectively. Otherwise,
if the destination has a "local address part" of INADDR ANY, or
if the destination is the symbolic name of a network,then the
route is assumed to be to a network; otherwise, it is presumed to
be a route to a host. If the route is to a destination connected via a
gateway, the metric should be greater than 0. All symbolic names
specified for a destination or gateway are looked up first as a host
name using gethostbyname(3N). If this lookup fails, get­
netbyname is then used to interpret the name as that of a net­
work.

route uses a raw socket and the SIOCADDRT and SIOCDELRT
ioctl's to do its work. As such, only the superuser may modify
the routing tables.

If the -f flag option is specified, route will "flush" the routing
tables of all gateway entries. If this is used in conjunction with
one of the commands described above, the tables are flushed prior
to the command's application.

February, 1990
Revision C

route(lM) route(lM)

The -n flag option prevents attempts to print host and network
names symbolically when reporting actions.

DIAGNOSTICS
add [host I network] %s: gateway %s flags %x
The specified route is being added to the tables. The values print­
ed are from the routing table entry supplied in the ioctl system
call. If the gateway address used was not the primary address of
the gateway (the first one returned by gethostbyname), the
gateway address is printed numerically as well as symbolically.

delete [host I network] %s: gateway %s flags %x
As above, but when deleting an entry.

%s %s done
When the -f flag option is specified, each routing table entry
deleted is indicated with a message of this form.

Network is unreachable
An attempt to add a route failed because the gateway listed was
not on a directly-connected network. The next-hop gateway must
be given.

not in table
A delete operation was attempted for an entry which wasn't
present in the tables.

routing table overflow
An add operation was attempted, but the system was low on
resources and was unable to allocate memory to create the new
entry.

SEE ALSO
routed(lM), intro(5).

February,1990 2
RevisionC

routed(IM) routed(IM)

NAME
routed - network routing daemon

SYNOPSIS
/ etc/ in. routed [-d] [-g] [-s] [-q] [-t] [logfile]

DESCRIPTION

1

routed is invoked at boot time to manage the network routing
tables. The routing daemon uses a variant of the Xerox NS Rout­
ing Information Protocol in maintaining up to date kernel routing
table entries. It used a generalized protocol capable of use with
multiple address types, but is currently used only for Internet rout­
ing within a cluster of networks.

In normal operation routed listens on the udp(5P) socket for
the route service (see services(4N)) for routing information
packets. If the host is an internetwork router, it periodically sup­
plies copies of its routing tables to any directly connected hosts
and networks.

When routed is started, it uses the SIOCGIFCONF ioctl to
find those directly connected interfaces configured into the system
and marked "up" (the software loopback interface is ignored). If
multiple interfaces are present, it is assumed that the host will for­
ward packets between networks. routed then transmits a re­
quest packet on each interface (using a broadcast packet if the in­
terface supports it) and enters a loop, listening for request and
response packets from other hosts.

When a request packet is received, routed formulates a reply
based on the information maintained in its internal tables. The
response packet generated contains a list of known routes, each
marked with a "hop count" metric (a count of 16, or greater, is
considered "infinite"). The metric associated with each route re­
turned provides a metric relative to the sender.

response packets received by routed are used to update the rout­
ing tables if one of the following conditions is satisfied:

(I) No routing table entry exists for the destination network or
host, and the metric indicates the destination is "reachable"
(i.e. the hop count is not infinite).

(2) The source host of the packet is the same as the router in the
existing routing table entry. That is, updated information is
being received from the very internetwork router through
which packets for the destination are being routed.

February, 1990
RevisionC

routed(lM) routed(lM)

(3) The existing entry in the routing table has not been updated
for some time (defined to be 90 seconds) and the route is at
least as cost effective as the current route.

(4) The new route describes a shorter route to the destination
than the one currently stored in the routing tables; the metric
of the new route is compared against the one stored in the
table to decide this.

When an update is applied, routed records the change in its
internal tables and updates the kernel routing table. The change is
reflected in the next response packet sent

In addition to processing incoming packets, routed also periodi­
cally checks the routing table entries. If an entry has not been up­
dated for 3 minutes, the entry's metric is set to infinity and marked
for deletion. Deletions are delayed an additional 60 seconds to in­
sure the invalidation is propagated throughout the local internet.

Hosts acting as internetwork routers gratuitously supply their rout­
ing tables every 30 seconds to all directly connected hosts and net­
works. The response is sent to the broadcast address on nets capa­
ble of that function, to the destination address on point-to-point
links, and to the router's own address on other networks. The nor­
mal routing tables are bypassed when sending gratuitous
responses. The reception of responses on each network is used to
determine that the network and interface are functioning correctly.
If no response is received on an interface, another route may be
chosen to route around the interface, or the route may be dropped
if no alternative is available.

routed supports several options:

-d Enable additional debugging information to be logged, such
as bad packets received.

-g This flag is used on internetwork routers to offer a route to
the "default" destination. This is typically used on a gate­
way to the Internet, or on a gateway that uses another routing
protocol whose routes are not reported to other local routers.

-s Supplying this option forces routed to supply routing infor­
mation whether it is acting as an internetwork router or not.
This is the default if multiple network interfaces are present,
or if a point-to-point link is in use.

-q This is the opposite of the -s option.

February, 1990
Revision C

2

routed(lM) routed(lM)

3

-t If the -t option is specified, all packets sent or received are
printed on the standard output. In addition, routed will not
divorce itself from the controlling terminal so that interrupts
from the keyboard will kill the process.

Any other argument supplied is interpreted as the name of file in
which routed's actions should be logged. This log contains in­
formation about any changes to the routing tables and, if not trac­
ing all packets, a history of recent messages sent and received
which are related to the changed route.

In addition to the facilities described above, routed supports the
notion of "distant" passive and active gateways. When routed
is started up, it reads the file fete/gateways to find gateways
which may not be located using only information from the SIOG­
IFCONF ioetl. Gateways specified in this manner should be
marked passive if they are not expected to exchange routing infor­
mation, while gateways marked active should be willing to ex­
change routing information (Le. they should have a routed pro­
cess running on the machine). Passive gateways are maintained in
the routing tables forever and information regarding their ex­
istence is included in any routing information transmitted. Active
gateways are treated equally to network interfaces. Routing infor­
mation is distributed to the gateway and if no routing information
is received for a period of the time, the associated route is deleted.
External gateways are also passive, but are not placed in the ker­
nel routing table nor are they included in routing updates. The
function of external entries is to inform routed that another
routing process will install such a route, and that alternate routes
to that destination should not be installed. Such entries are only
required when both routers may learn of routes to the same desti­
nation.

The fete/gateways is comprised of a series of lines, each in
the following format:

<net I host> name} gateway name2 metric value < passi ve I active I external>

The net or host keyword indicates if the route is to a network
or specific host

name} is the name of the destination network or host. This may
be a symbolic name located in fete/networks or
/ etc/hosts (or, if started after named(1M), known to the
name server), or an Internet address specified in "dot" notation;
see inet(3N).

February, 1990
RevisionC

routed{IM) routed{IM)

name2 is the name or address of the gateway to which messages
should be forwarded.

value is a metric indicating the hop count to the destination host or
network.

One of the keywords passive, active or external indi­
cates if the gateway should be treated as passive or active (as
described above), or whether the gateway is external to the scope
of the routed protocoL

Internetwork routers that are directly attached to the Arpanet or
Milnet should use the Exterior Gateway Protocol (EGP) to gather
routing infonnation rather then using a static routing table of pas­
sive gateways. EGP is required in order to provide routes for lo­
cal networks to the rest of the Internet system. Sites needing as­
sistance with such configurations should contact the Computer
Systems Research Group at Berkeley.

FILES
/ete/in.routed
fete/gateways

SEE ALSO
route(1M), udp(5P).

BUGS

for distant gateways

The kernel's routing tables may not correspond to those of rout­
ed when redirects change or add routes. The only remedy for this
is to place the routing process in the kernel.

routed should incorporate other routing protocols, such as
Xerox NS and EGP. Using separate processes for each requires
configuration options to avoid redundant or competing routes.

routed should listen to intelligent interfaces, such as an IMP,
and to error protocols, such as ICMP, to gather more information.
It does not always detect unidirectional failures in network inter­
faces (e.g., when the output side fails).

February, 1990
Revision C

4

rpcinfo(1M} rpcinfo(1M}

NAME
rpcinf 0 - report RPC information

SYNOPSIS
rpcinfo -p [host]

rpcinfo -u host program-number version-number

rpcinfo -t host program-number version-number

DESCRIPTION
rpcinfo makes an RPC call to an RPC server and reports what
it finds.

FLAG OPTIONS
The following flag options are interpreted by rpcinfo:

-p Probe the portmapper on host, and print a list of all registered
RPC programs. If host is not specified, it defaults to the
value returned by hostname(1}.

-u Make an RPC call to procedure 0 of program-number using
UDP, and report whether a response was received.

-t Make an RPC call to procedure 0 of program-number using
TCP, and report whether a response was received.

FILES
/usr/etc/rpcinfo

SEE ALSO
portmap(1M}.
A/UX Network System Administration.

1 February, 1990
Revision C

rstatd(IM)

NAME
rstatd - kernel statistics server

SYNOPSIS
/usr/etc/rpc.rstatd

DESCRIPTION

rstatd(IM)

rstatd is a server which returns performance statistics obtained
from the kernel. The rstatd daemon is normally started by
/ etc/ inetd.

FILES
/usr/etc/rpc.rstatd

SEE ALSO
inetd(IM).

February, 1990
RevisionC

1

runacct(IM) runacct(IM)

NAME
runacct - run daily accounting

SYNOPSIS
/usr/lib/acct/runacct [mmdd [state]]

DESCRIPTION

1

runacct is the main daily accounting shell procedure. It is nor­
mally initiated via cron(IM). runacct processes connect, fee,
disk, and process accounting files. It also prepares summary files
for prdaily or billing purposes.

runacct takes care not to damage active accounting files or
summary files in the event of errors. It records its progress by
writing descriptive diagnostic messages into active. When an
error is detected, a message is written to / dev / console, mail
(see mail(l» is sent to root and adm, and runacct ter­
minates. runacct uses a series of lock files to protect against
reinvocation. The files lock and lockl are used to prevent
simultaneous invocation, and lastdate is used to prevent more
than one invocation per day.

runacct breaks its processing into separate, restartable states
using s tat e f i 1 e to remember the last state completed. It ac­
complishes this by writing the state name into statefile.
runacct then looks in statefile to see what it has done and
to determine what to process next. states are executed in the fol­
lowing order:

SETUP

WTMPFIX

CONNECT 1

CONNECT2

PROCESS

MERGE

FEES

Move active accounting files into working files.

Verify integrity of wtmp file, correcting date
changes if necessary.

Produce connect session records in ctmp. h
format.

Convert ctmp. h records into tacct. h for­
mat.

Convert process accounting records into
tacct. h format.

Merge the connect and process accounting
records.

Convert output of chargefee(IM) into
tacct. h format and merge with connect and
process accounting records.

February, 1990
RevisionC

runacct (1M) runacct (1M)

DISK Merge disk accounting records with connect,
process, and fee accounting records.

MERGETACCT Merge the daily total accounting records in
daytacct with the summary total accounting
records in /usr / adm/ acct/ sum/tacct.

CMS Produce command summaries.

USEREXI T Any installation-<iependent accounting programs
can be included here.

CLEANUP Cleanup temporary files and exit

To restart runacct after a failure, first check the active file
for diagnostics, then fix up any corrupted data files such as pacct
or wtmp. The lock files and lastdate file must be removed
before runacct can be restarted. The argument mmdd is neces­
sary if runacct is being restarted, and specifies the month and
day for which runacct will rerun the accounting. Entry point
for processing is based on the contents of statefile; to over­
ride this, include the desired state on the command line to desig­
nate where processing should begin.

EXAMPLES
To start runnacct, use: nohup runacct 2>
/usr/adm/acct/nite/fd21og &

To restart runacct, use
nohup runacct 0601 2» /usr/adm/acct/nite/fd21og &

To restart runacct at a specific state, use
nohup runacct 0601 MERGE 2» /usr/adm/acct/nite/fd21og &

FILES
/usr/lib/acct/runacct
/etc/wtmp
/usr/adm/pacct*
/usr/src/cmd/acct/tacct.h
/usr/src/cmd/acct/ctmp.h
/usr/adm/acct/nite/active
/usr/adm/acct/nite/daytacct
/usr/adm/acct/nite/lock
/usr/adm/acct/nite/lockl
/usr/adm/acct/nite/lastdate
/usr/adm/acct/nite/statefile
/usr/adm/acct/nite/ptacct*.mmdd

February, 1990
Revision C

2

runacct (1M) runacct(IM)

SEE ALSO
mail(1), acct(1M), acctcms(1M), acctcom(1),
acctcon(1M), acctmerg(1M), acctprc(IM),
acctsh(IM), cron(1M), fwtmp(1M), acct(2), acct(4),
utmp(4).

BUGS

3

Normally it is not a good idea to restart runacct in the SETUP
state. Run SETUP manually and restart via:

runacct mmdd WTMPFIX

If runacct failed in the PROCESS state, remove the last
ptacct file because it will not be complete.

February, 1990
RevisionC

rusersd{ 1M)

NAME
rusersd- rusers server

SYNOPSIS
/usr/etc/rpc.rusersd

DESCRIPTION

rusersd{lM)

rusersd is a server which returns information for rusers(lN).
The rusers daemon is normally invoked by inetd(lM).

FILES
/usr/etc/rpc.rusersd

SEE ALSO
rusers(IN), inetd(IM).

February, 1990
Revision C

1

rwall(lM) rwall(lM)

NAME
rwall- write to all users over a network

SYNOPSIS
rwall hostl host2 ...
rwall -n netgroupl netgroup2 ...
rwall -h host -n netgroup

DESCRIPTION
rwall reads a message from standard input until end-of-file. It
then sends this message, preceded by the line

Broadcast Message ...

to all users logged in on the specified host machines.

A machine can receive such a message only if it is running the In­
ternet daemon, inetd(lM), which will invoke rwalld if
/usr / etc/ rpc. rwalld is listed in the file / etc/ servers.

FLAG OPTIONS
The following flag options are interpreted by rwall:

-n Send the message to the specified network groups, which are
defined in netgroup(4).

-h Specify host for netgroup. If this option is used, it must pre­
cede the -n option.

FILES
/usr/etc/rwall
/etc/servers

SEE ALSO

1

inetd(1M), rwalld(1M), shutdown(1M), wall(1M),
netgroup(4), servers(4).

February, 1990
Revision C

rwalld(lM) rwalld(lM)

NAME
rwalld - network rwall server

SYNOPSIS
/usr/etc/rpc.rwalld

DESCRIPTION
rwalld is a server that handles rwall(l) and shutdown(lM)
requests. It is implemented by calling wall (l) to all the ap­
propriate network machines. The rwalld daemon is normally
started by / etc/ inetd.

FILES
/usr/etc/rpc.rwalld

SEE ALSO
rwall(l), wall(l), inetd(lM), shutdown(lM).

February, 1990
Revision C

1

rwhod(lM) rwhod(lM)

NAME
rwhod - system status server

SYNOPSIS
/etc/in.rwhod

DESCRIPTION

1

rwhod is the server maintaining the database used by rwho(l)
and ruptime(1). Its operation is predicated on the ability to
broadcast messages on a network.

rwhod both produces and consumes status information. It
periodically queries the state of the system and constructs status
messages that are broadcast on a network. It also listens for the
status messages of other rwhod servers, validates the messages,
then records them in files in the directory / us r / s poo 1/ rw ho.

The rwho server transmits and receives messages at the port indi­
cated in the rwho service specification, (see services(4N».
The messages sent and received are of the form:

struct

} ;

struct

} ;

outmp {

char out line[8];/* tty name
=name[8];/* char out user

long out _time; /* time

whod {

char wd_vers;
char wd_type;
char wd_fill[2];
int wd_sendtime;
int wd_recvtime;
char wd_hostname[32];
int wd loadav[3];
int wd=boottime;
struct whoent {

id
on

*/
*/
*/

struct outmp we_utmp;
int we idle;

wd_we[1024 /-sizeof (struct whoent)];

All fields are converted to network byte order before being
transmitted. The load averages are calculated by the kernel and
represent load averages 5, 10, and 15 minutes. The host name is
returned by the gethostname(2N) system call. The array at the

February, 1990
Revision C

rwhod(IM) rwhod(IM)

end of the message contains information about the users logged in
to the sending machine. This includes the contents of the u tmp(4)
entry for each non-idle terminal line and the time since a character
was last received on the terminal line. '

The rwho server discards messages it receives if they don't ori­
ginate at the port of a rwho server, or if the host name specified in
the message contains any unprintable ASCII characters. rwhod
places valid messages it receives in files named whod. hostname
in the directory /usr/spool/rwho. These files contain only
the most recent message.

rwhod generates status messages approximately every 60
seconds. rwhod performs an nlist(3C) on /unix every 10
minutes to ensure that this file is the system image currently
operating.

FILES
/etc/rwhod

SEE ALSO
rwho(1), ruptime(I), services(4N).

BUGS
rwhod should relay status information between networks. People
often interpret the server dying as a machine going down.

February, 1990 2
RevisionC

sal(lM)

See sadc(lM)

1

sal(lM)

February, 1990
RevisionC

sa2(IM)

February, 1990
Revision C

See sadc(IM)

sa2(1M)

1

sadc(1M) sadc(1M)

NAME
sadc, sal, sa2 - system activity report package

SYNOPSIS
lusr Ilibl sal sadc [I n] [file]

lusr/lib/sa/sa1 [I n]

lusr Ilibl sal sa2 [-u] [-b] [-y] [-c] [-w] [-a] [-q] [-v]
[-m] [-A] [-slime] [-etime] [-isec]

DESCRIPTION

1

System activity data can be accessed at the special request of a
user (see sar(1)) or automatically, on a routine basis as described
here. The operating system contains a number of counters that are
incremented as various system actions occur. These include
counters for CPU utilization, buffer usage, disk and tape I/O ac­
tivity, TrY device activity, switching and system-call, file-access,
queue activity, and counters for interprocess communications.

sadc and the shell procedures sal and sa2 are used to sample,
save, and process this data.

sadc, the data collector, samples system data n times every 1

seconds and writes in binary format to file or to standard output.
If 1 and n are omitted, a special record is written. This facility is
used at system boot time to mark the time at which the counters
restart from zero. The I etcl rc entry

su adm -c "/usr/11b/sa/sadc /usr/adm/sa/da'date +%d'"

writes the special record to the daily data file to mark the system
restart.

The shell script sal, a variant of sadc, is used to collect and
store data in binary file lusr/adm/sa/sadd where dd is the
current day. The arguments 1 and n cause records to be written n
times at an interval of 1 seconds, or only once, if omitted. The en­
tries in crontab (see cron(1M))

o * * * 0,6 /usr/lib/sa/sa1
o 8-17 * * 1-5 /usr/lib/sa/sa1 1200 3
o 18-7 * * 1-5 /usr/lib/sa/sa1

will produce records every 20 minutes during working hours and
hourly otherwise. The shell script sa2, a variant of sar(1),
writes a daily report in the file lusr I adml sal sardd. The flag
options are explained in sar{l). The crontab entry

5 18 * * 1-5 /usr/11b/sa/sa2 -5 8:00 -e 18:01 -1 3600 -A

February, 1990
Revision C

sadc(IM) sadc(IM)

will compile a single report at 6:05 P.M. of each working day giv­
ing an hourly summary of all activity in the interval 8:00 A.M. to
6:01 P.M.
The structure of the binary daily data file is
struct sa {

struct sysinfo si;

struct minfo mi;

int szinode;
int szfile;
int szproc;
int szlckf;

int szlckr;

int mszinode;
int mszfile;
int mszproc;
int mszlckf;

int mszlckr;

long inodeovf;

long fileovf;

long procovf;

time t ts;
int apstate;

/* defined in
/usr/include/sys/sysinfo.h */

/* defined in
/usr/included/sys/sysinfo.h */

/* current size of inode table */
/* current size of file table */
/* current size of proc table */
/* current size of file record

header table */
/* current size of file record

lock table */
/* maximum size of inode table */

size of file table */
/* maximum size of proc table */
/* maximum size of file record

header table */
/* maximum size of file record

lock table */
/* cumulative overflows of inode

table since boot*/
/* cumulative overflows of file

table since boot */
/* cumulative overflows of proc

table since boot */
/* time stamp */

long devio[NDEVS] [4];/* device unit information */

#define 10 OPS 0

#define 10 BCNT 1

#define 10 ACT 2

#define 10 RESP 3

} ;

FILES
/usr/lib/sa/sadc
/usr/lib/sa/sal
/usr/lib/sa/sa2

February, 1990
RevisionC

/* number of I/O requests since
boot */

/* number of blocks transferred
since boot */

/* cumulative time in ticks when
drive is active */

/* cumulative I/O response time in
ticks since boot */

2

sadc(1M)

/usr/adm/sa/sadd
/usr/adm/sa/sardd
/tmp/sa.adrfl

SEE ALSO
sag(1G), sar(1), timex(1), cron(1M).

sadc(1M)

daily data file
daily report file
address file

"System Activity Package" in A/UX Local System Administra­
tion.

3 February, 1990
RevisionC

sccstorcs(IM) sccstorcs(1M)

NAME
sccstorcs - build RCS file from SCCS file

SYNOPSIS
sccstorcs [-t] [-v] sccsfiles

DESCRIPTION
sccstorcs builds an RCS file from each SCCS file specified as
an argument The deltas and comments for each delta are
preserved and installed into the new RCS file in order. Also
preserved are the user access list and descriptive text, if any, from
the SCCS file.

The following flags are meaningful:

-t Trace only. Prints detailed information about the SCCS file
and lists the commands that would be executed to produce
the RCS file. No commands are actually executed and no
RCS file is made.

-v Verbose. Prints each command that is run while
sccstorcs is building the RCS file.

EXAMPLES
The command line:

sccstorcs s.getword.c

creates the files getword. c and getword. c, v (which should
not already exist). If those files do exist, sccstorcs will exit
with an error rather than overwrite them.

WARNINGS
This reference manual entry describes a utility that Apple under­
stands to have been released into the public domain by its author
or authors. Apple has included this public domain utility for your
convenience. Use it at your own discretion. Often the source
code can be obtained if additional requirements are met, such as
the purchase of a site license from an author or institution.

FILES
/usr/ucb/sccstorcs

SEE ALSO
ci(1), co(I), rcs(I).
Walter F. Tichy, "Design, Implementation, and Evaluation of a
Revision Control System," in Proceedings of the 6th International
Conference on Software Engineering, IEEE, Tokyo, Sept 1982.

February, 1990
Revision C

1

sccstorcs(1M) sccstorcs(IM)

DIAGNOSTICS
All diagnostics are written to the standard error output. Nonzero
exit status on error.

BUGS
sccstorcs does not preserve all SCCS options specified in the
SCCS file. Most notably, it does not preserve removed deltas, MR
numbers, and cutoff points.

NOTES
Ken Greer
Copyright © 1983 by Kenneth L. Greer

2 February, 1990
RevisionC

sendrnail (1M) sendrnail(1M)

NAME
sendrnail- send mail over the Internet

SYNOPSIS
/usr / lib/ sendmail [flag ...] [address ...]

DESCRIYfION
sendmail sends a message to one or more addresses, routing
the message over whatever networks are necessary. sendrnail
does inter-network forwarding as necessary to deliver the message
to the correct place.

sendmail is not intended as a user interface routine; other pro­
grams provide user-friendly front ends; sendrnail is used only
to deliver preformatted messages.

With no flag options, sendmail reads its standard input up to an
end-of-file or a line consisting of a single dot only and sends a
copy of the message found there to all of the addresses listed. It
determines the network(s) to use based on the syntax and contents
of the addresses.

Local addresses are looked up in a file and aliased appropriately.
Aliasing can be prevented by preceding the address with a
backslash. Normally the sender is not included in any alias expan­
sions; for example, if john sends to group, and group includes
john in the expansion, then the letter will not be delivered to
john.

Flag options are

-ba

-bd

-bi

-bm

-bp

February, 1990
RevisionC

Goes into ARPANET mode. All input lines
must end with a RETURN and all messages
will be generated with a RETURN at the end.
Also, the From: and Sender: fields are
examined for the name of the sender.

Runs as a daemon. This requires Berkeley
IPC. sendmail will fork and run in the
background, listening on socket 25 for in­
coming SMTP connections. This is nonnal­
lyrun from /etc/inittab.

Initialize the alias database.

Delivers mail in the usual way (default).

Prints a listing of the queue.

1

sendmail(lM)

-bs

-bt

-bv

-bz

-cftle

-dX

-Ffullname

-fname

-bN

-n

-ox value

-q[time]

2

sendmail{lM)

Uses the SMTP protocol as described in
RFC821 on standard input and output This
flag implies all the operations of the -ba flag
that are compatible with SMlP.

Runs in address test mode. This mode reads
addresses and shows the steps in parsing; it
is used for debugging configuration tables.

Verifies names only; do not try to collect or
deliver a message. Verify mode is normally
used for validating users or mailing lists.

Creates the configuration freeze file.

Uses alternate configuration file. send­
mai 1 refuses to run as root if an alternate
configuration file is specified. The frozen
configuration file is bypassed.

Sets debugging value to X.

Sets the full name of the sender.

Sets the name of the from person (that is,
the sender of the mail). -f can only be used
by "trusted" users (normally root, dae­
mon, and network) or if the person you are
trying to become is the same as the person
you are.

Sets the hop count to N. The hop count is in­
cremented every time the mail is processed.
When it reaches a limit, the mail is returned
with an error message, the victim of an alias­
ing loop. If not specified, Received: lines
in the message are counted.

Doesn't do aliasing.

Sets option x to the specified value. Options
are described later.

Processes saved messages in the queue at
given intervals. If time is omitted, process
the queue once. time is given as a tagged
number, with s being seconds, m being
minutes, h being hours, d being days, and w
being weeks. For example, -qlh30m or -

February, 1990
RevisionC

sendmail(IM)

-rname

-t

-v

sendmail (1M)

q9 Om would both set the timeout to one hour
thirty minutes. If time is specified, send­
mail will run in the background. This op­
tion can be used safely with -bd.

An alternate and obsolete form of the -f
flag.

Reads message for recipients. To:, Ce:,
and Bee: lines will be scanned for recipient
addresses. The Bee: line will be deleted
before transmission. Any addresses in the
argument list will be suppressed, that is, they
will not receive copies even if listed in the
message header.

Goes into verbose mode. Alias expansions
will be announced, and so forth.

There are also a number of processing options that may be set.
Normally these will only be used by a system administrator. Op­
tions may be set either on the command line using the -0 flag or
in the configuration file. The options are

Afile Uses alternate alias file.

e On mailers that are considered "expensive" to connect
to, doesn't initiate immediate connection. This requires
queuing.

dx Set the delivery mode to x. Delivery modes are i for in­
teractive (synchronous) delivery, b for background
(asynchronous) delivery, and q for queue only - that is,
actual delivery is done the next time the queue is run.

D Try to automatically rebuild the alias database if neces­
sary.

ex Set error processing to mode x. Valid modes are rn to
mail back the error message, w to "write" back the error
message (or mail it back if the sender is not logged in), p
to print the errors on the terminal (default), and q to
throwaway error messages (only exit status is returned).
If the text of the message is not mailed back by modes m
or w and if the sender is local to this machine, a copy of
the message is appended to the file dead. letter in
the sender's home directory.

February, 1990
Revision C

3

sendmail(IM) sendmail (1M)

4

Fmode The mode to use when creating temporary files.

f Saves UNIX-style From lines at the front of messages.

gN The default group ID to use when calling mailers.

Hfile The SMTP help file.

i Doesn't take dots on a line by themselves as a message
terminator.

Ln The log level.

m Sends to "me" (the sender) even in an alias expansion.

o If set, this message may have old style headers. If not
set, this message is guaranteed to have new style headers
(that is, commas instead of spaces between addresses). If
set, an adaptive algorithm is used that will correctly
determine the header format in most cases.

Qqueuedir
Selects the directory in which to queue messages.

rtimeout
The timeout on reads; if none is set, sendmail will wait
forever for a mailer. This option violates the word (if not
the intent) of the SMTP specification, so the timeout
should probably be fairly large.

Sfile Saves statistics in the named file.

s Always instantiates the queue file, even under cir­
cumstances where it is not strictly necessary. This pro­
vides safety against system crashes during delivery.

Ttime Sets the timeout on undelivered messages in the queue to
the specified time. After delivery has failed (for exam­
ple, because of a host being down) for this amount of
time, failed messages will be returned to the sender. The
default is three days.

tstz,dtz Sets the name of the time zone.

uN Sets the default user ID for mailers.

In aliases, the first character of a name may be a vertical bar to
cause interpretation of the rest of the name as a command to pipe
the mail to. It may be necessary to quote the name to keep send­
mail from suppressing the blanks from between arguments. For
example, a common alias is

February, 1990
RevisionC

sendmail(IM) sendmail(IM)

msgs: "I/usr/ucb/msgs -s"

Aliases may also have the syntax : include :filename to ask
sendmail to read the named file for a list of recipients. For ex­
ample, an alias such as

poets: ":include:/usr/local/lib/poets.list"

would read /usr/local/lib/poets .list for the list of ad­
dresses making up the group.

sendmail returns an exit status describing what it did. The
codes are defined in <sysexits. h>.

EX OK Successful completion on all addresses.

EX NOUSER User name not recognized.

EX UNAVAILABLE Catchall meaning necessary resources
were not available.

Syntax error in address. EX SYNTAX

EX SOFTWARE Internal software error, including bad
arguments.

EX OSERR Temporary operating system error,
such as "cannot fork".

Host name not recognized. EX NOHOST

EX TEMPFAIL Message could not be sent immediate­
ly, but was queued.

FILES
usr/lib/aliases
usr/lib/aliases.pag
usr/lib/aliases.dir
usr/lib/sendmail.cf
usr/lib/sendmail.fc
usr/lib/sendmail.hf
usr/lib/sendmail.st
usr/spool/mqueue/*

SEE ALSO

raw data for alias names

data base of alias names
configuration file
frozen configuration
help file
collected statistics
temp files

mail(I), rmail(I), mailq(IM), newaliases(1M),
aliases(4).
A/UX Network System Administration.

February, 1990
Revision C

5

setport(lM) setport(lM)

NAME
setport - set a serial port

SYNOPSIS
setport -r [-s speed] device-file .. .
setport -0 [-s speed] device-file .. .

DESCRIPTION
setport adds or modifies entries for serial ports in
/etc/inittab. The placeholder device-file is the name of an
existing serial port device in / dev. For a given device-file,
setport creates an entry in /etc/inittab, if necessary, and
sets the port to allow, or disallow logins as desired.

Since setport creates entries in /etc/inittab, it may be
used by a device initialization routine called by
/ etc/ autoconfig. In this case, it is important to ensure that a
device node exists in / dev before running setport from an
autoconfig initialization routine.

FLAG OPTIONS
setport interprets the following arguments

-r

-0

-s speed

Respawn: set the port to permit login sessions.

Set the port to off to disallow login sessions.

Specify the initial baud speed to be used. The
default is 9600. For modems, 12oo should usu­
ally be specified.

EXAMPLE
The following command

setport -r -s 19200 ttyO

enables login sessions on serial port 0 (the "modem" port), with
the initial speed set to 192oo baud.

NOTES

1

setport supercedes an earlier program, tty add and should
be used in place of tty_add. -

February, 1990
Revision C

setport(IM)

FILES
/etc/setport
/etc/inittab

SEE ALSO

setport(1M)

The initialization table

init(1M), mknod(lM), tty_add(lM), inittab(4).

February, 1990
Revision C

2

settimezone(IM) settimezone(IM)

NAME
settimezone - set the local time zone

SYNOPSIS
set time zone

DESCRIPTION
settimezone provides a simple, menu-based method for set­
ting the local time zone. Changes take effect the next time you
log in. You must be superuser to run this command.

The NUX® system clock maintains Greenwich mean time (also
know as Universal Coordinated Time). Application programs use
time-zone information files to calculate the local time and, there­
fore, the system must know the local time zone. In order to obtain
the correct local time, set timezone links the proper time zone
information file to /etc/zoneinfo/localtime and changes
the contents of the file /etc/TIMEZONE that is used to set the
T Z environment variable.

FILES
/etc/settimezone
/etc/zoneinfo/localtime
/etc/zoneinfo/*
/etc/TIMEZONE

SEE ALSO
date(1).

1 February, 1990
RevisionC

showmount(1M) showmount(lM)

NAME
showmount - show all remote mounts

SYNOPSIS
showmount [-a] [-d] [-e] [host]

DESCRIPTION
showmount lists all the clients that have remotely mounted a file
system from host. This information is maintained by the
mountd(lM) server on host, and is saved across crashes in the
file / etc/ rmtab. The default value for host is the value re­
turned by hostname(1).

FLAG OPTIONS
-d List directories that have been remotely mounted by clients.

-a Print all remote mounts in the format

hostname :directory

where hostname is the name of the client, and directory is the
root of the file system that has been mounted.

-e Print the list of exported file systems.

FILES
/usr/etc/showmount

SEE ALSO
mountd(lM), exports(4), rmtab(4).

BUGS
IT a client crashes, its entry will not be removed from the list until
it reboots and executes umount -a.

February, 1990
Revision C

1

shutacct(lM)

See acctsh(IM)

1

shutacct(IM)

February, 1990
Revision C

shutdown(1M) shutdown(IM)

NAME
shutdown - terminate all processes and bring the system down
to single-user mode

SYNOPSIS
fete/shutdown

DESCRIPTION
shutdown terminates all currently running processes in an order­
ly and cautious manner. shutdown interacts with the operator
(who is the person who invoked shutdown) and may instruct the
operator to perform some specific tasks or supply certain
responses before execution can resume. shutdown goes through
the following steps:

1. All users logged in to the system are notified to log out of the
system by a broadcasted message. The operator may display
his or her own message at this time. Otherwise, the standard
backup message is displayed.

2. If the operator wishes to run the backup procedure, then
shutdown unmounts all file systems.

3. The superblocks of all file systems are updated before the
system is brought to single-user mode. To ensure file system
integrity, a syne must be done before rebooting the system.
This is usually because a process started from that file system
is still running.

FILES
fete/shutdown

DIAGNOSTICS
The most common error diagnostic is deviee busy. This diag­
nostic happens when a particular file system cannot be unmount­
ed.

SEE ALSO
mount(lM), powerdown(lM), reboot(lM), syne(I).

February, 1990
Revision C

1

slattach(IM) slattach(IM)

NAME
s 1 at tach - attach serial lines as network interfaces

SYNOPSIS
/etc/slattach ttyname [baudrate]

DESCRIYfION
s 1 at tach is used to assign a tty line to a network interface. The
ttyname parameter is a string of the form tty XX or
/dev/ttyXX. The optional baudrate parameter is used to set
the speed of the connection. If the baudrate parameter is not
specified, the default of 9600 is used.

Mter executing slattach, run ifconfig(IM) to define the
network source and destination addresses. To specify the network
source and destination addresses, use

ifconfig interface-name address dest_address up

The interface-name parameter is the name shown by
netstat(1); either s10 or s11 under NUX. address is the ad­
dress of the local end of the slip point-to-point line.
dest address is the address of the remote end (the slip­
serverhost) of the slip point-to-point line.

Only the superuser may attach a network interface.

To detach the interface, kill the sla t tach process, then use

ifconfig interface-name down

to quit the slip connection. interface-name is the name that is
shown by netstat(I).

EXAMPLES
/etc/slattach ttyh8
ifconfig slO daisy-slip paris-slip

/etc/slattach /dev/tty01 1200
ifconfig s11 daisy-slip paris-slip

DIAGNOSTICS

1

slattach produces messages indicating that the specified inter­
face does not exist, the requested address is unknown, or the user
is not privileged and tried to alter the configuration of an interface.

February, 1990
RevisionC

slattach(1M) slattach(1M)

SEE ALSO
netstat(l), ifconfig(lM), slip(1M), hosts(4),
slip. config(4), slip. hosts(4), slip. user(4).

February, 1990
Revision C

2

slatteonf(IM) slatteonf(IM)

NAME
slatteonf - attach and configure serial lines as network
interfaces

SYNOPSIS
/ete/ slatteonf ttyname baudrate address dest-address
[options]

DESCRIPTION
slatteonf is used to assign a tty line to a network interface and
to define the network source and destination addresses. The
ttyname parameter is a string of the form tty XX or
/dev/ttyXX, where XX is the serial port number. The baudrate
parameter is used to set the speed of the connection. address is
the address of the local end of the slip point-to-point line. dest­
address is the address of the remote end (the slip-server-host) of
the slip point-to-point line. The optional options parameters are
passed to ifeonfig(IM)t which is invoked by slatteonf.

If the s 1 at t eon f command is successfult the message

sl n

is displayed, where n is replaced by the interface used by the new
s 1 i P interface. For A/UX machines, you should see s 10 or
sll.

slatteonf must designated be set-user-ID to the superuser in
order to attach and configure a s 1 i p network interface.

To quit the slip interfacet kill the slatteonf process. After
slatteonf has been killed by hanging up the dial-up line or
sending a HUP signal to the slatteonf processt the slip inter­
face is automatically taken down with ifeonfig. The route to
the slip interface is also removed at this time. netstat(I).

EXAMPLES

1

/etc/slattconf ttyh8 9600 joe-slip paris-slip netmask OxffffffOO
/etc/slattconf /dev/ttyO 2400 chris-slip paris-slip

In the first example above, the user is attaching the serial port
referenced by ttyh8 at 9600 baud as the slip client joe­
slip to the slip server paris-slip. Note that the net­
mask is also specified. Both the client and server must use the
same netmask. In the second example, the serial port
/dev/ttyO is being attached as a slip interface. Note that the
baud parameter that you specify must match the baud of your ori­
ginal connection to the remote machine. For examplet if you are

February t 1990
RevisionC

slattconf(IM) slattconf(1M)

using a 2400 baud modem to connect to the remote machine, then
you should specify 2400 in the slattconf command line.

DIAGNOSTICS
slattconf produces messages indicating that the specified in­
terface does not exist, the requested address is unknown, or the
user is not privileged and tried to alter an interface's
configuration.

SEE ALSO
netstat(I), ifconfig(IM), mkslipuser(IM), slip(lM),
hosts(4), slip. config(4), slip. hosts(4),
slip. user(4).

February, 1990
RevisionC

2

slip(IM) slip(IM)

NAME
s lip - attach a dialup serial line as a network interface

SYNOPSIS
/etc/slip

DESCRIPTION

1

slip is used to assign a dial-up tty line to a network interface and
to define the network source and destination addresses of the
point -to-point link. The assignment and definition are made on
the basis of the user requesting slip, the slip user names-to­
host configuration file / etc/ slip. hosts, and the slip
configuration files / etc/ slip. config and
/ etc/ slip .user.

A user first connects to a slip server via a dial-up or hard-wired
connection, such as by using cu, kermit, or tip. After a user
establishes a connection, the user invokes slip on the server to
attach the serial line as a network interface.

When a user invokes slip using a dialup or hard-wired tenninal,
the user's ID and the available s lip interfaces are checked
against / et c / s 1 i p . us e r. If the user ID is valid and there are
available unused slip interfaces, the file / etc/ slip. user is
updated to reflect the use of a s 1 i p interface by that user.

After invoking slip, the user no longer has access to the dial-up
tenninalline for issuing commands to the shell. The user must re­
turn to the local machine and invoke either slattach or
slattconf to bring up the local end of the slip link. After
running slattconf, the user can invoke telnet, rlogin, or
other network programs from the local machine.'

The kernels of both the local machine and the remote machine
must be configured to support the slip interface. For NUX
machines, to configure your kernel for slip, use

/etc/newconfig nfs slip

or

/etc/newconfig bnet slip

After executing the two lines above, you need to modify
/etc/inittab to tum on the networking daemons. Then re­
boot to run the new networking kernel.

February, 1990
Revision C

slip(lM) slip(lM)

FILES
The / etc/hosts file must be appropriately configured on the
client machine before s 1 i p is invoked. The
/etc/slip.config, /etc/slip.hosts,
/ etc/ slip. user, and / etc/hosts files must be appropri­
ately configured on the slip server before slip is invoked. If
your machine is a s 1 i P client machine, the only file you have to
modify is /etc/hosts.

The / etc/hosts file on the client must contain the usable Inter­
net address when the client invokes slip. The slip-server In­
ternet address must also be included in this file. Ask the system
administrator of the slip server for the Internet addresses to in­
clude in this file. A sample / etc/hosts file is:

Ox7F.OxOO.OxOO.Ox01 loop 10 100

128.120.254.3 hostname1 *slip server
128.120.253.1 hostname2 *slip client

The first line contains the loopback address; this line is always
present in the / etc/hosts file. The second line in the example
is the Internet address and host address of the slip-server. The
third line is the client Internet address and hostname used when
the client makes a slip connection.

The system administrator of the s 1 i P host must modify the
/etc/slip.config, /etc/slip.hosts, and
/ etc/ slip. user files.

A sample slip. config configuration file is

* slip.config configuration file
* Each line configures a serial line

* 128.120.254.3
128.120.254.3

Each line is a slip-server host address for each of the slip in­
terfaces supported by the s 1 i p-server host. In the previous ex­
ample, the host has two slip interfaces available for user dialup
use.

An example of a slip. hosts file is

* dialup slip.hosts table
* maps usercodes to host addresses

*

February, 1990
RevisionC

2

slip(1M) , slip(lM)

128.120.253.1 joe
128.120.253.2 chris
128.120.253.3 mike
128.120.253.4 linda

The Internet address in the first field is used when the user
specified in the second field invokes slip.

The slip user file / etc/ slip. user is not human readable.
You create the /etc/slip.user file by creating the
/ etc/ slip. con fig file and then running mkslipuser. Use
the command dslipuser to display the contents of the user file,
and to report the number of s 1 i p users on the system and the
number of available slip interfaces.

DIAGNOSTICS

3

When a s 1 i p command succeeds, one of two messages is print­
ed.

Attaching source-host-name (aa.bb.cc.dd) to
domain domain-name via slip-server-host-name (ee.ff.gg.hh)

or

Attaching source-host-name (aa.bb.cc.dd) to
network via slip-server-host-name (ee.ff.gg.hh)

When a slattconf command succeeds, the following message
is displayed,

sIn

The n is replaced by the s 1 i p interface used by the new s 1 i p
connection.

Any of the following error messages indicate that the slip com­
mand failed. Note that the error-string reports in the following
messages are generated by perror.

/etc/slip.user: can't seek
/etc/slip.user: can't write
ioctl TCGETA: error-string
ioctl TCSETA: error-string
ioctl LDGETU: error-string
ioctl SIOCSIFDSTADDR: error-string
ioctl SIOCSIFADDR: error-string

In addition, the diagnostic Connection failure: may be ac­
companied by any of the following messages.

Bad login name

February, 1990
RevisionC

slip(lM) slip(1M)

Can't open list of valid user-host mappings
User ~er~ is not authorized to connect to SLIP
Invalid address aa.bb.cc.dd in hosts file
Can't open SLIP user file
Unable to lock SLIP user file
Host hogname is already attached
All lines are busy. Try again later.

The following error message is a warning that setting the subnet
mask for the slip point-to-point line failed. The line is brought
up using a standard internet address.

ioetl SIOCSIFNETMASK: error-string

SEE ALSO
netstat(1), dslipuser(1M), ifeonfig(lM),
mkslipuser(1M), hosts(4), slip. eonfig(4),
slip. hosts(4), slip. user(4).

BUGS
s 1 i p has a fixed definition s 1 i p-netmask that may be defined in
jete/hosts. This slip-netmask allows you one and only one
subnet mask for all slip hosts. This should be configurable per
slip host

If the slip netmask is defined on the slip server then you must
specify a matching netmask in the netmask option of the
slatteonf command.

s 1 i p lines require careful handling by the router or by special
hand-installed routes on the slip-server-host. The Internet
router shipped with NUX (in. routed) handles slip correct­
ly. Most Internet routers do not

February,1990
RevisionC

4

spray(lM) spray(1M)

NAME
spray - spray packets

SYNOPSIS
/usr/etc/spray host [-1 length] [-c count]

DESCRIPTION
spray sends a one-way stream of packets to host using RPC, and
then reports how many were received by host and what the
transfer rate was. The default value of length is 86 bytes (the size
of the RPC and UDP headers) and the default value of count is the
number of packets required to make the total stream size 100,()()()
bytes. The host name can be either a name or an Internet address.

The length parameter is the number of bytes in the Ethernet packet
that holds the RPC call message. Since the data is encoded using
XDR and XDR only deals with 32 bit quantities, not all values of
length are possible. spray will round up to the nearest possible
value. When length is greater than 1514, then the RPC call can no
longer be encapsulated in one Ethernet packet, so the length field
no longer has a simple correspondence to Ethernet packet size.

FILES
/usr/etc/spray

SEE ALSO
sprayd(1M).

1 February, 1990
Revision C

sprayd(IM)

NAME
sprayd - spray server

SYNOPSIS
/usr/etc/rpc.sprayd

DESCRIPTION

sprayd(IM)

sprayd is a server which returns information for spray(I). The
sprayd daemon is normally invoked by inetd(lM).

FILES
/usr/etc/rpc.sprayd

SEE ALSO
spray(1M).

February, 1990
Revision C

1

StartMoni tor(1M) StartMonitor(IM)

NAME
StartMonitor - display a progress bar during the A/UX®
boot sequence

SYNOPSIS
StartMonitor

DESCRIPTION
StartMoni tor displays a Macintosh® dialog box with a pro­
gress bar during the latter stages of the NUX boot process (after
A/UX startup has passed control to the kernel and the kernel has
launched init. macsysinit, which is the first entry in
/etc/inittab, invokes startmac with StartMonitor as
the "Finder™" application (using the -f flag of startmac).

StartMonitor receives messages via a System V message
queue from other processes involved in booting the system. These
messages indicate the total number of boot phases, the current
boot phase, what percentage of that phase has finished, the ID of
messages to be displayed, and the strings to substitute for parame­
ters in the message strings. The message strings are stored in the
string list in the StartMoni tor resource file
(lmac/sys/Startup System Folder/%StartMonitor). The
message ID is its position in the string list

StartMoni tor exits when it receives a quit message.

Shell scripts involved in booting invoke startmsg with ap­
propriate arguments to send messages. fsck sends messages
directly to StartMonitor. Mter the root file system has been
checked, applications that need to send messages to
StartMoni tor could invoke startmsg to do it for them. If
many messages need to be sent, the application could create a pipe
to startmsg and write startmsg argument strings into the
pipe.

FILES
/mac/sys/Startup System Folder/StartMonitor
/mac/sys/Startup System Folder/%StartMonitor
/usr/include/sys/startmsg.h

SEE ALSO
macsysini t(IM), startmsg(IM).

1 February, 1990
Revision C

startmsg(IM) startmsg(1M)

NAME
startmsg - send messages to StartMoni tor during the
A/UX® boot process

SYNOPSIS
startmsg -

startmsg [-pnumphases] [-nnextphase] [-dpcntdone] [­
mmsgselector [substr 1 ... substr4]] [-q]

DESCRIPTION
s t a rtms g is used during the boot process to send messages to
StartMonitor via a System V message queue. These mes­
sages control the movement of the progress bar in the S tart -
Moni tor dialog box. The messages indicate the total number of
boot phases, the current boot phase, what percentage of that phase
has finished, p the message to be displayed, and the substrings to
be incorporated into the message. The messages are stored as an
array of strings in the StartMoni tor resource file,
/mae/sys/Startup/System Folder/%StartMonitor.
The message displayed is the one at index msgselector in the ar­
ray.

Normally, startmsg is invoked by shell scripts such as sysin­
it re. After the root file system has been checked, applications
that need to send messages to StartMoni tor (those that take
an amount of time that could worry users) could invoke
startmsg to do it for them. If many messages need to be sent,
the application could create a pipe to startmsg and write
startmsg argument strings into the pipe. In such cases,
s t a rtms g will consume and process one line of the input at a
time, in the same order as it is generated, and exiting when an
end-of-file signal arrives.

Logically, the boot process is divided into phases based on the pri­
mary activities which occur. The normal boot process consists of
six phases, as is shown. Because StartMoni tor does not run
before phase two, the very first startmsg command issued uses
the -n option to start the progress bar at phase three. Because this
is approximately half way through the total number of phases, the
progress bar appears at about mid-position when you first see it.
Relative to the first three phases, the final three phases are time
consuming, so the -d option is used, allowing incremental updat­
ing of the progress bar while you wait. Note that although you
may specify a number outside the range of 1 to 1 00 for

February, 1990
Revision C

1

startmsg(1M) startmsg(1M)

pcntdone, the progress bar can not be advanced beyond the finish
point for a given phase; when within the third phase of the six­
phase NUX boot process, the progress bar can not be advanced
beyond the point 3/6ths of the total length of the progress bar (nor
reduced to a point less than 216ths of the total length of the pro­
gress bar). To advance the progress bar further you must use the
-n option and its next phase argument.

Phase Description

1. The NUX Startup application loads the kernel.

2. The kernel is launched. Then, init spawns
macsysinit. If the -v (verbose) flag option was not
passed to launch during startup, macsysinit
launches macsysinitrc which launches Start­
Monitor and CommandShell.

3. The root file system is checked.

4. autoconfig runs, and the device-driver startup
scripts are executed.

5. File systems other than the root file system are checked.

6. Background processes (daemons) listed in
/etc/inittab are spawned.

StartMoni tor monitors the boot process after it is spawned in
phase two, after which the current phase, and completion percen­
tages within the current phase, can be established with
startmsg.

FLAG OPTIONS

2

The following flag options are interpreted by startmsg:

Read argument strings from standard input. These strings
can contain any of the other startmsg options, just as they
would be passed on the command line. This option is mutu­
ally exclusive of all others on the command line.

-pnumphases
Specify the total number of phases in the boot process. This
message should normally only be sent once.

-nnextphase
Specify which phase of booting is starting.

-dpcntdone
Specify what percentage of the current phase has completed.

February, 1990
RevisionC

startmsg(1M) startmsg(1M)

-mmsgselector [substr 1 ... substr4]

-q

FILES

Specify the index, msgselector, into an array of message
strings to select the one to be displayed in the dialog box. Up
to four substrings may also be specified. When specified,
these substrings are incorporated into the the selected mes­
sage string in corresponding order. So the first substring re­
places the first substring placeholder in the selected message
string that is stored in the StartMoni tor resource file.
The second, third, and fourth substrings specified are handled
similarly.

Send the quit signal to StartMoni tor.

/etc/startmsg
/usr/include/sys/startmsg.h

SEE ALSO
macsysini t(1M), StartMoni tor (1M) .

February, 1990
RevisionC

3

startup(IM)

See acctsh(IM)

1

startup(IM)

February, 1990
Revision C

startup(lM} startup(1M}

NAME
s tart up - run startup programs at boot time

SYNOPSIS
fete/startup

DESCRIPTION
startup is a shell script, called from /etc/sysinitre,
which runs a set of startup routines to initialize autoconfigured
modules that are part of the kernel. An example startup script is
/ ete/ startup. d/BNET which initializes the loop interface
100.

NOTE
startup is called from /ete/sysinitre at system startup.
It is not expected to be of general utility.

FILES
fete/startup
/ete/startup.d/*

SEE ALSO
autoeonfig(1M), sysini tre(IM}.

February, 1990
Revision C

1

statd(IM) statd(1M)

NAME
statd
services

provide crash and recovery for network locking

SYNOPSIS
/etc/rpc.statd

DESCRIPTION
statd is a network status monitor daemon that is an intermediate
version of the status monitor. It interacts with lockd(1M) to pro­
vide the crash and recovery functions for the locking services on
the network file system (NFS).

/ etc/ statmon/ current and / etc/ statmon/backup
are directories generated by s tat d. Each entry in
/ etc/ statmon/ current represents the name of the machine
to be monitored by the statd daemon. Each entry in
/ etc/ statmon/backup represents the name of the machine
to be notified by the statd daemon upon its recovery.

/ etc/ statmon/ state is generated by statd to record its
version number. This version is incremented each time a crash or
recovery takes place.

FILES
/etc/sm/*
/etc/sm.bak/*
/etc/state
/etc/statmon/current
/etc/statmon/backup
/etc/statmon/state

SEE ALSO
lockd(1M), sm(4).

BUGS
The crash of a site is only detected upon its recovery.

1 February, 1990
Revision C

stdhosts(IM) stdhosts(1M)

NAME
stdhosts - convert Internet addresses to standard form

SYNOPSIS
/ etc /yp / stdhos t s file

DESCRIPTION
stdhosts converts Internet addresses to a standard form. Ad­
dresses are read from a file (usually / etc/hosts).

NOTES
stdhosts is a filter used in updating the /etc/yp data bases.
It is not expected to be of general utility.

FILES
/etc/yp/stdhosts
/ etc/hosts the host table

SEE ALSO
ypmake(1M), hosts(4).

February, 1990
Revision C

1

swap(1M) swap(IM)

NAME
swap - add or delete disk blocks to or from the swap area

SYNOPSIS
/ etc/ swap -a [swapdev [swaplow [swaplen]]]

/ etc/ swap -d swapdev [swaplow]

/etc/swap -1

DESCRIPTION
swap provides a method of adding, deleting, and monitoring the
system swap areas used by the memory manager.

FLAG OPTIONS
s w a p interprets the following flag options:

- a Add the specified swap area. If no swap area is specified,
add all entries in /etc/fstab with type swap. The place­
holder swapdev is the name of a block special device, for ex­
ample, /dev/dsk/cOdOsO. The value of swaplow is the
offset in 512-byte blocks into the device where the swap area
should begin. The value of swaplen is the length of the swap
area in 512-byte blocks. The default value for swaplow and
swaplen is O. If swaplen is 0, then the length of the swap
area is determined from the size of the partition. See
dpme(4). This option can only be used by the superuser.
Swap areas are normally added by the system startup routine
/ etc/ rc when going into multiuser mode.

-d Delete the specified swap area. The placeholder swapdev is
the name of a block special device, for example,
/dev/dsk/cOdOsO. The value of swaplow is the offset in
512-byte blocks into the device where the swap area should
begin. The default value for swaplow is O. Using this option
marks the swap area as "being deleted." The system does
not allocate any new blocks from the area and tries to free
swap blocks from it. The area remains in use until all blocks
from it are freed. This option can be used only by the su­
peruser.

-1 List the status of all the swap areas. The output has four
columns:

DEV The swapdev device file for the swap area if one can
be found in the / dev / ds k or / dev directories,
and its major and minor device number, in decimal.

1 February, 1990
Revision C

swap(1M) swap(1M)

LOW The value of swaplow for the area in 512-byte
blocks.

LEN The value of swaplen for the area in 512-byte
blocks.

FREE The number of free 512-byte blocks in the area. If
the swap area is being deleted, this column will be
marked (indel).

WARNINGS
No check is done to see if a swap area being added overlaps with
an existing swap area or file system.

FILES
/ete/fstab
fete/swap

February, 1990
RevisionC

2

sysinitrc(lM)

See brc(lM)

1

sysini trc(lM)

February, 1990
Revision C

talkd(lM)

NAME
talkd - remote user communication server

SYNOPSIS
/etc/talkd

DESCRIPTION

talkd(lM)

talkd is the server that notifies a user that somebody else wants
to initiate a conversation. It acts a repository of invitations,
responding to requests by clients wishing to hold a conversation.

In nonnal operation, a client, the caller, initiates a session by send­
ing a CTL MSG to the server of type LOOK UP (see
<protocois/talkd. h». This causes the server to-search its
invitation tables to check if an invitation currently exists for the
caller (to speak to the callee specified in the message). If the look­
up fails, the caller then sends an ANNOUNCE message causing the
server to broadcast an announcement on the callee's login ports
requesting contact. When the callee responds, the local server
uses the recorded invitation to respond with the appropriate ren­
dezvous address and the caller and callee client programs establish
a stream connection through which the conversation takes place.

FILES
/etc/talkd

SEE ALSO
talk(lN), wri te(l).

February, 1990
Revision C

1

telinit(lM)

See ini t(IM)

1

telinit(lM)

February, 1990
RevisionC

telnetd(1M) telnetd(1M)

NAME
telnetd - DARPA TELNET protocol server

SYNOPSIS
/usr/etc/in.telnetd

DESCRIPTION
telnetd is a server which supports the DARPA standard TEL­
NET virtual terminal protocol. telnetd is invoked by the inter­
net server (see inetd(IM)), normally for requests to connect to
the TELNET port as indicated by the / etc/ services file (see
services(4N)).

telnetd operates by allocating a pseudo-terminal device (see
pty(7)) for a client, then creating a login process which has the
slave side of the pseudo-terminal as stdin, stdout, and
stderr. telnetd manipulates the master side of the pseudo­
terminal, implementing the TELNET protocol and passing charac­
ters between the remote client and the login process.

When a TELNET session is started up, telnetd sends TELNET
options to the client side indicating a willingness to do remote
echo of characters, to suppress go ahead, and to receive terminal
type information from the remote client If the remote client is
willing, the remote terminal type is propagated in the environment
of the created login process. The pseudo-terminal allocated to the
client is configured to operate in "cooked" mode, and with
XTABS and CRMOD enabled (see tty(4)).

telnetd is willing to do: echo, binary, suppress go ahead, and
timing mark. telnetd is willing to have the remote client do:
binary, terminal type, and suppress go ahead.

FILES
/usr/etc/in.telnetd

SEE ALSO
telnet(IC), inetd(lM), services(4N), pty(7).

BUGS
Some TELNET commands are only partially implemented.

The TELNET protocol allows for the exchange of the number of
lines and columns on the user's terminal, but telnetd doesn't
make use of them.

February, 1990
Revision C

1

telnetd(IM) telnetd(1M)

2

Because of bugs in the original 4.2 BSD telnet(1C), telnetd
performs some dubious protocol exchanges to try to discover if
the remote client is, in fact, a 4.2 BSD telnet(IC).

Binary mode has no common interpretation except between simi­
lar operating systems (UNIX in this case).

The terminal type name received from the remote client is con­
verted to lowercase.

The packet interface to the pseudo-terminal (see pty(7)) should
be used for more intelligent flushing of input and output queues.

telnetd never sends TELNET go ahead commands.

February, 1990
Revision C

tftpd(1M) tftpd(lM)

NAME
t f t pd - DARPA Trivial File Transfer Protocol server

SYNOPSIS
/usr/etc/in.tftpd

DESCRIPTION
tftpd is a server supporting the DARPA Trivial File Transfer
Protocol. The TFTP server operates at the port indicated in the
tftp service description; see services(4N).

Since you do not have to have an account or password on the re­
mote system to use tftp, tftpd will only allow you to access
publicly readable files. This includes all users on all hosts who
can be reached through the network. This may not be appropriate
on all systems, and you should consider the implications before
enabling t f t P service.

BUGS
This server is only self-consistent. Due to the unreliability of the
transport protocol (UDP) and the scarcity of TFfP implementa­
tions, it is uncertain whether it really works.

tftpd does not check the search permissions of the directories
leading to the accessed files.

FILES
/usr/etc/in.tftpd

SEE ALSO
tftp(1), socket(2N), services(4N).

February, 1990
Revision C

1

tic(lM) tic(lM)

NAME
tic - terminfo compiler

SYNOPSIS
tic [-v[n]]file ...

DESCRIPTION
tic translates terminfo files from the source format into the
compiled format. The results are placed in the directory
/usr/lib/terminfo.

The -v (verbose) flag option causes tic to output trace informa­
tion showing its progress. If the optional integer is appended, the
level of verbosity can be increased.

tic compiles all terminfo descriptions in the given files.
When a use= field is discovered, tic searches first the current
file, then the master file, which is . /terminfo. src.

If the environment variable TERMINFO is set, the results are
placed there instead of /usr / lib/terminfo.

Some limitations: total compiled entries cannot exceed 4096
bytes. The name field cannot exceed 128 bytes.

FILES
/usr/bin/tic
/usr/lib/terminfo/*/*

SEE ALSO
curses(3X), terminfo(4).

BUGS

1

Instead of searching. /terminfo. src, tic should check for
an existing compiled entry.

February, 1990
RevisionC

transcript (1M) transcript(1M)

NAME
psbanner, pscomm, psinterface, psrv, pstext­
TRANScRlPT spooler filters for POSTSCRlPT printers

SYNOPSIS
/usr/Iib/ps/psbanner
/usr/Iib/ps/pscomm
/usr/Iib/ps/psinterface
/usr/Iib/ps/psrv
/usr/Iib/ps/pstext

DESCRIPTION
These are the low-level TRANSCRIPT interface filters for use by
the System V line printer spooling system. The psinterface
shell script is a printer interface program that may be supplied to
Ipadmin. The options are as specified in the AIUX Local System
Administration. This shell script sources a printer-specific shell
script named transcript/printer. opt below the current
working directory (the lp spooling directory) which may do addi­
tional printer-specific processing (for example, specify no page re­
versal). psinterface is responsible for the complete process­
ing of the print job. If job banner break pages are enabled for this
printer (and requested for this job), psinterface will invoke
psbanner to format a banner break page. psinterface also
distinguishes between text files (which get formatted) and
PoSTSCRIPT print files. If the input to psinterface does not
begin with the PoSTSCRlPT "magic number" (the first two char­
acters being %!), psinterface will invoke pstext to create a
listing of the file. If the first bytes of the input file are %! P S­
Adobe-, and if the printer options so specify, psinterface
will also page-reverse the file (with the psrv filter) before print­
ing. psinterface currently recognizes three TRANScRIPT­
specific spooling options (presented to lp with the -0 flag op­
tion): the h flag option suppresses the printing of a banner break
page, the r flag option suppresses page reversal, and the m flag op­
tion causes psinterface to send any stream output from the
execution of the user's POSTSCRIPT print file back to the user as
mail.

The program pscomm is the lowest level filter. It manages com­
munication with the printer, error handling, status reporting, etc.
psinterface and pscomm manage a printer log file named
transcript/printer-log (under the lp spooling directory).
This file contains a log of each job processed, as well as any error

February, 1990
RevisionC

1

transcript(IM) transcript (1M)

output from the printer. In particular, it contains messages regard­
ing paper-out, paper-jams, and so forth. Doing a tail on this file
will help determine the printer's status.

FILES
/usr/lib/ps/*

/transcript/printer-log
/transcript/printer. opt
/usr/tmpX/b*

/usr/tmpX/o*
/usr/tmpx/t*

POSTSCRIPT library, prolo­
gues, filters, etc.
Printer log file.
Printer-specific options script
Break page temporary gen­
erated by psbanner and
psinterface.
Job output temporary for mail.
Temporary file to format text
files.

SEE ALSO

2

lp(I), lpstat(l), psdit(l), psroff(I), lpadmin(1M),
lpsched(1M).
AIUX Local System Administration.

February, 1990
RevisionC

trpt(IM) trpt(IM)

NAME
t rpt - transliterate protocol trace

SYNOPSIS
/usr/etc/trpt [-a] [-j] [-phex-address] [-s] [-t]
[system [core]]

DESCRIPTION
t rpt prints a readable description of TCP trace records created
when a socket is marked for debugging (see getsockopt(2N».
When you don't supply an flag option, trpt prints all the trace
records grouped according to TCP connection protocol control
block (PCB). The following flag options alter this:

- a in addition to the normal output, print the values of the
source and destination addresses for each packet record­
ed

-j list only the protocol control block addresses for which
there are trace records

-phex-address
list only trace records associated with the hex-address
protocol control block

- s in addition to the normal output, print a detailed descrip­
tion of the packet-sequencing information

-t in addition to the normal output, print the values for all
timers at each point in the trace

system used for debugging a system other than the default

core used for debugging a core file other than the default

We recommend the following use of trpt. Isolate the problem
and enable debugging on the socket(s) involved in the connection.
Find the address of the protocol control blocks associated with the
sockets using netstat -A (see netstat(lN». Then, run
t rpt -p and supply the associated protocol control block ad­
dresses. If there are many sockets using the debugging flag op­
tion, you might want to use the - j flag option to check for any
trace records for the socket in question.

FILES
/usr/etc/trpt
/unix
/dev/kmem

February, 1990
Revision C

1

trpt(IM) trpt(IM)

SEE ALSO
getsockopt(2N), netstat(IN).

DIAGNOSTICS
no namelist

the system image doesn't contain the proper symbols to find
the trace buffer.

Other diagnostics are self explanatory.

BUGS

2

Should also print the data for each input or output, but this is not
saved in the trace record.

February, 1990
RevisionC

tty_add(IM)

NAME
tty_add, tty_kill- modify the /ete/inittab file

SYNOPSIS
tty_add [-r] [-gspeed] device-file-name ...

tty_kill

DESCRIPTION
tty add and tty kill are programs designed to be run from
a device-initialization routine from / ete/ autoeonfig.
tty add adds getty entries to /ete/inittab for the dev­
ices listed and may take two flag options (see "FLAG OP­
TIONS" below). tty kill removes getty entries from
/ete/inittab for whIch no corresponding entry in /dev ex­
ists. It would normally be run after running dev _kill{1M).

FLAG OPTIONS
tty_add interprets the following flag options:

-r Set the inittab entry to respawn; without this flag, the
effective setting is off .

-gspeed
Set speed that is an argument of get ty (the name of an en­
try in the /ete/gettydefs file) to speed. The default
value is 9600.

FILES
fete/tty add
fete/tty-kill
/ete/inittab
/ete/gettydefs

SEE ALSO
autoeonfig(IM), dev kill(IM), getty(lM),
setport(IM). -

NOTES
The functionality of tty add has been superceded by
setport(IM). Use of set port is recommended over
tty_add.

February, 1990
Revision C

1

tty_kill(lM)

1

See tty_add(1M)

February, 1990
RevisionC

tunefs(1M) tunefs(1M)

NAME
tunefs - tune an unmounted Berkeley 4.2 file system (UFS)

SYNOPSIS
/etc/tunefs [-p] [-mminfree] [-drotdelay] [-emaxbpg]
[-amaxcontig] [-ooptimization] special

DESCRIPTION
tunefs either prints the value of or changes the dynamic param­
eters of a UPS file system that affects the layout policies.

FLAG OPTIONS
-p Prints the current values of the maximum number of contigu­

ous blocks, rotation delay, blocks per cylinder group,
minimum free space, and optimization. The following op­
tions are used to change these values:

-mminfree
Specify the percentage of space reserved from use by normal
users. This value is the minimum free-space threshold. The
default value of minfree is 10%. This value can be set to 0
for the file system, although up to a factor of three in
throughput is lost over the performance obtained at a 10%
threshold. Note that if the value is raised above the current
usage level, users will be unable to allocate files until enough
files have been deleted to get under the higher threshold.

-drotdelay
Specify the expected time (in milliseconds) to service a
transfer -completion interrupt and initiate a new transfer on
the same disk. The option is used to decide how much rota­
tional spacing to place between successive blocks in a file.
The value of rotdelay must be greater than or equal to 0 and
less than or equal to 16. This value is set to 4 for the NUX
release distribution of the root file system.

-emaxbpg
Specify the maximum number of blocks any single file can
allocate out of a cylinder group before it is forced to begin al­
locating blocks from another cylinder group. Typically the
value of maxbpg is set to about one quarter of the total blocks
in a cylinder group. The intent is to prevent any single file
from using up all the blocks in a single cylinder group, thus
degrading access times for all files subsequently allocated in
that cylinder group. The effect of this limit is to cause big
files to do long seeks more frequently than if they were al-

February, 1990
Revision C

1

tunefs(IM) tunefs(IM)

lowed to allocate all the blocks in a cylinder group before
seeking elsewhere. For file systems with exclusively large
files, this parameter should be set higher. This value is set to
256 for the NUX release distribution of the root file system.

-amaxcontig
Specify the maximum number of contiguous blocks that are
laid out before forcing a rotational delay (see -d below). The
default value is 1 because most device drivers require an in­
terrupt per disk transfer. The value of maxcontig must be
greater than 0 and less than or equal to 200. This value is set
to 1 for the NUX release distribution of the root file system.

-0 optimization
Specify that the file system can either try to minimize the
time spent allocating blocks or can attempt to minimize the
space fragmentation on the disk. If the value of minfree (see
above) is less than 10%, the file system should optimize for
space to avoid running out of full-sized blocks. For values of
minfree greater than or equal to 10%, fragmentation is un­
likely to be problematical, and the file system can be optim­
ized for time. This value is set to time for the NUX release
distribution of the root file system.

SEE ALSO
fs(4), newfs(1M).

BUGS
This program should work on mounted and active file systems.
Because the superblock is not kept in the buffer cache, the
changes only take effect if the program is run on unmounted file
systems. To change the root file system, the system must be re­
booted after the file system is tuned.

NOTES

2

Device drivers that can chain several buffers together in a single
transfer should set maxcontig to the maximum chain length.

February, 1990
RevisionC

t urnacct (1M)

February, 1990
RevisionC

See acctsh(lM)

t urnacct (1M)

1

tzdump(IM) tzdump(IM)

NAME
tzdump - time zone dumper

SYNOPSIS
t zdump [-v] [-c cutoffyear] [zonename ...]

DESCRIPTION
t zdump prints the current time in each zonename named on the
command line.

These flag options are available:

-v For each zonename on the command line, print the current
time, the time at the lowest possible time value, the time one
day after the lowest possible time value, the times both one
second before and exactly at each time at which the rules for
computing local time change, the time at the highest possible
time value, and the time at one day less than the highest pos­
sible time value. Each line ends with isdst=l if the given
time is Daylight Saving Time or isdst=O otherwise.

-c cutoffyear
Cut off the verbose output near the start of the given year.

FILES
/etc/tzdump
/etc/zoneinfo

SEE ALSO

standard zone information directory

tzic(1M), ctime(3), tzfile(4).

1 February, 1990
Revision C

tzic(IM) tzic(IM)

NAME
t zic - time zone compiler

SYNOPSIS
tzic [-v] [-d directory] [-1 localtime] [-p posixrules]
[-L leapsecondfilename] [-3] [filename ...]

DESCRIPTION
t zic reads text from the file(s) named on the command line and
creates the time-conversion information files specified in this in­
put. If a filename is -, the standard input is read.

t z i c interprets the following flag options:

-v Complain if a year that appears in a data file is outside the
range of years representable by time(2) values.

-d directory
Create time conversion information files in the named direc­
tory rather than in the standard directory named below.

-p timezone
Use the rules of the given time zone when handling POSIX­
fonnat time zone environment variables. t z i c acts as if the
file contained a link line of the form

Link timezone posixrules

-1 local time
Use the given time zone as local time. tzic acts as if the
file contained a link line of the form

Link timezone local time

- L leapsecondfilename
Read leap-second information from the file with the given
name. If this option is not used, no leap-second information
appears in output files.

- 3 Limit time values stored in ouput files to values that are the
same whether they are taken to be signed or unisgned. You
can use this option to generate files compatible with the Sys­
tem V file system (SVFS).

Input lines are made up of fields. Fields are separated from one
another by any number of space characters. Leading and trailing
spaces on input lines are ignored. An unquoted number sign char­
acter (=11=) in the input introduces a comment which extends to the
end of the line the number sign character appears on. Space char-

February, 1990
Revision C

1

tzic(IM) tzic(IM)

2

acters and number sign characters may be enclosed in double
quotes (n) if they're to be used as part of a field. Any line that is
blank after comment stripping is ignored. Nonblank lines are ex­
pected to be of one of three types: rule lines, zone lines, and link
lines.

A rule line has the form
Rule NAME FROM TO TYPE IN ON AT SAVE LEITERIS

An example is:

Rule USA 1969 1973 - Apr lastSun 2:00 1:00 D

The fields that make up a rule line are:
NAME The (arbitrary) name of the set of rules this rule is

part of.

FROM

TO

TYPE

IN

The first year in which the rule applies. The word
minimum (or an abbreviation) means the
minimum year with a representable time value.
The word maximum (or an abbreviation) means
the maximum year with a representable time
value.

The final year in which the rule applies. In addi­
tion to minimum and maximum (as above), the
word only (or an abbreviation) may be used to
repeat the value of the FROM field.

The type of year in which the rule applies. If
TYPE is -, then the rule applies in all years
between FROM and TO inclusive. If TYPE is
uspres, the rule applies in United States
presidential election years. If TYPE is nonpres,
the rule applies in years other than U.S. presiden­
tial election years. If TYPE is something else,
then t z i c executes the command

yearistype year type

to check the type of a year. An exit status of 0 is
taken to mean that the year is of the given type;
an exit status of 1 is taken to mean that the year is
not of the given type.

The month in which the rule takes effect. Month
names may be abbreviated.

February, 1990
RevisionC

tzic(1M)

ON

AT

SAVE

LETTERIS

tzic(1M)

The day on which the rule takes effect. Recog­
nized fonns include:

5
lastSun
lastMon
Sun>=8
Sun<=25

The fifth of the month
The last Sunday in the month
The last Monday in the month
The first Sunday on or after the 8th
The last Sunday on or before the 25th

Names of days of the week may be abbreviated or
spelled out in full. Note that there must be no
spaces within the ON field.

The time of day at which the rule takes effect.
Recognized fonns include:

2
2:00
15:00
1:28:14

Time in hours
Time in hours and minutes
24-hour time format (times after noon)
Time in hours, minutes, and seconds

Any of these fonns may be followed by the letter
w if the given time is local wall-clock time or s if
the given time is local standard time. In the ab­
sence of w or s, wall-clock time is assumed.

The amount of time to be added to local standard
time when the rule is in effect This field has the
same fonnat as the AT field (although, the wand s
suffixes are not used).

The "variable part" (for example, the S or D in
EST or EDT) of time-zone abbreviations to be
used when this rule is in effect. If this field is -,
the variable part is null.

A zone line has the form
Zone NAME GMTOFF RULES/SAVE FORMAT [UNfIL]

An example is:
Zone Australia/South-west 9:30 Aus CST 1987 Mar 15 2:00

The fields that make up a zone line are:

NAME The name of the time zone. This is the name used
in creating the time conversion infonnation file

February, 1990
RevisionC

3

tzic(lM) tzic(lM)

4

GMTOFF

for the zone.

The amount of time to add to Greenwich mean
time (GMT) to get standard time in this zone.
This field has the same format as the AT and
SAVE fields of rule lines. The field must begin
with a - (minus sign) if time must be subtracted
from GMT.

RULES/SAVE The name of the rule(s) that apply in the time
zone or, alternately, an amount of time to add to
local standard time. If this field is -, then stan­
dard time always applies in the time zone.

FORMAT

UNTIL

The format for time-zone abbreviations in this
time zone. The pair of characters % s is used to
show where the "variable part" of the time-zone
abbreviation goes.

The time at which the GMT offset or the rule(s)
change for a location. It is specified as a year, a
month, a day, and a time of day. If this is
specified, the time-zone information is generated
from the given GMT offset and rule change until
the time specified.

The next line must be a "continuation" line.
This line has the same form as a zone line except
that the string Zone and the name are omitted be­
cause the continuation line places information
starting at the time specified as the UNTIL field in
the previous line in the file used by the previous
line. Continuation lines may contain an UNTIL
field, just as zone lines do, to indicate that the
next line is a further continuation.

A link line has the form

Link liNK-FROM liNK-TO

An example:

Link US/Eastern ESTSEDT

liNK-FROM
The same as the NAME field in some zone line.

February, 1990
Revision C

tzic(IM) tzic(IM)

UNK-TO
An alternate name for the same NAME field as above in that
zone line.

Except for continuation lines, lines may appear in any order in the
input

Lines in the file that describes leap seconds have the following
form:

Leap YEAR MONTH DAY HH:MM:SS CORR R/S

An example is:

Leap 1974 Dex 31 23:59 + S

The YEAR, MONTH, DAY, and HH :MM: SS fields tell when the leap
second happened. The CORR field should be + if a second was ad­
ded or - if a second was skipped. The R/ S field should be (an ab­
breviation of) Stationary if the leap second time given by the other
fields should be interpreted as GMT or (an abbreviation of) Rol­
ling if the leap second time given by the other fields should be
intpreted as local wall clock time.

NOTES
For areas with more than two types of local time, you may need to
use local standard time in the AT field of the earliest transition
time's rule to ensure that the earliest transition time recorded in
the compiled file is correct.

FILES
/etc/tzic
/etc/zoneinfo

SEE ALSO

Standard directory used for created
files

tzdump(IM), ctime(3), tzfile(4).

February, 1990
Revision C

5

umount(IM)

See mount(1M)

1

umount(IM)

February, 1990
RevisionC

uucico(1M) uucico(1M)

NAME
uucico, uushell - transfer files queued by uucp or uux

SYNOPSIS
/usr/lib/uucp/uucico [-dspooldir] [-ggrade] [-rrole]
[-R] [-ssystem] [-xdebug] [-L] [-tturnaround]

/usr/lib/uucp/uushell

DESCRIPTION
uucico performs the actual work involved in transferring files
between systems. uucp(1C) and uux(1C) merely queue requests
for data transfer which uucico processes.

uushell serves as the login shell for the user uucp. uushell
sets the environment variable TZ and calls uucico.

The following options are available to uucico.

-dspooldir
Use spooldir as the spool directory. The default is
/usr/ spool/uucp.

-ggrade Only send jobs of grade grade or higher this transfer.
The grade of a job is specified when the job is queued
by uucp or uux.

-rrole role is either 1 or 0; it indicates whether uucico is to
start up in master or slave role, respectively. 1 is used
when running uucico by hand or from cron(1M). 0
is used when another system calls the local system.
Slave role is the default

-R Reverse roles. When used with the -rl option, this
tells the remote system to begin sending its jobs first, in­
stead of waiting for the local machine to finish.

-ssystem
Call only system system. If -s is not specified and -rl
is specified, uucico will attempt to call all systems for
which there is work. If - s is specified, a call will be
made even if there is no work for that system. This is
useful for polling.

-xdebug Turn on debugging at level debug. Level 5 is a good
start when trying to find out why a call failed. Level 9
is very detailed. Level 99 is absurdly verbose. If role is
1 (master), output is normally written to the standard er­
ror output. If the standard error output is unavailable,

February, 1990
Revision C

1

uucico(lM) uucico(lM)

2

output is written to
/usr/spool/uucp/AUDIT/system. When role is 0
(slave), debugging output is always written to the AU­
DIT file.

- L Only call "local" sites. A site is considered local if the
device-type field in L. sys is one of LOCAL, DIR, or
TCP.

-tturnaround
Use turnaround as the line turnaround time (in minutes)
instead of the default 30. If turnaround is missing or 0,
line turnaround will be disabled. After uucico has
been running in slave role for turnaround minutes, it
will attempt to run in master role by negotiating with the
remote machine. In earlier versions of uucico, a
transfer of many large files in one direction would hold
up mail going in the other direction. With the tur­
naround code working, the message flow will be more
bidirectional in the short term. This option only works
with newer versions of uucico and is ignored by older
ones.

If uucico receives a SIGFPE (see kill(l», it will toggle the
debugging on or off.

uucico is commonly used either of two ways: as a daemon run
periodically by cron(lM) to callout to remote systems, and as a
"shell" for remote systems who call in. For calling out periodi­
cally, a typical line in a crontab file would be:

o * * * * /usr/lib/uucp/uucico -rl

This will run uucico every hour in master role. For each system
that has transfer requests queued, uucico calls the system, logs
in, and executes the transfers. The file L. sys is consulted for in­
formation about how to log in, while L-devices specifies avail­
able lines and modems for calling.

For remote systems to dial in, an entry in the passwd(4) file must
be created, with a login shell of uushell. For example:
nuucp:p~sword:5:5::/usrlspool/uucppublic:/usr/lib/uucpluushell

The DID for UUCP remote logins is not critical, so long as it
differs from the UUCP Administrative login. The latter owns the
UUCP files, and assigning this DID to a remote login would be an
extreme security hazard.

February, 1990
RevisionC

uucico(IM) uucico(lM)

FILES
/usr/spool/uucp/D.hostnamex/

/usr/lib/uucp/ UUCP internal
files/utilities

/usr/lib/uucp/L-devices Local device descriptions

/usr/lib/uucp/L-dialcodes Phone numbers and

/usr/lib/uucp/L.cmds

/usr/lib/uuCp/L.sys

/usr/lib/uucp/USERFILE

/usr/spool/uucp/

/usr/spool/uucp/AUDIT/*

/usr/spool/uucp/C./

/usr/spool/uucp/D./

prefixes

Remote command permis­
sions list

Host connection
specifications

Remote directory tree per­
missions list

Spool directory

Debugging audit trails

Control files directory

Incoming data file directo-
ry

/usr/spool/uucp/D.hostname/
Outgoing data file directo­
ry

/usr/spool/uuCp/D.hostnamex/
Outgoing execution file
directory

/usr / spool /uucp/CORRUPT / Place for corrupted c. and
D. files

/usr/spool/uucp/ERRLOG UUCP internal error log

/usr/spool/uucp/LOGFILE UUCP system activity log

/usr/spool/uucp/LCK/LCK .. *
Device lock files

File transfer statistics log

System status files

/usr/spool/uucp/SYSLOG

/usr/spool/uucp/STST/*

/usr/spool/uucp/TM./ File transfer temp directo­
ry

February, 1990
RevisionC

3

uucico{lM}

/usr/spool/uucp/X./

uucico(1M}

Incoming execution file
directory

/usr/ spool/uucppublic Public access directory

SEE ALSO
uucp(1C}, uuq(1C}, uux(1C}, uuclean(1M}, uuxqt(1M}.

4 February, 1990
Revision C

uuclean(1M} uuclean(IM}

NAME
uuclean - clean up the uucp spool directory

SYNOPSIS
/usr / lib/uucp/uuclean [-ddirectory] [-IlJIile] [-ntime]
[-pfpre]] [-ssys] [-wfile]

DESCRIPTION
uuclean scans the spool directory (by default,
/usr/spool/uucp) for files with the specified prefix and
deletes those that are older than the specified number of hours. By
default, uuclean deletes files beginning with LCK, C, X, .T, TM,
D, STST, and LTMP. uuclean creates a record of deletions in
the spool directory called LOGDEL.

This program is typically started by cron(IM}.

FLAG OPTIONS
The following flag options are interpreted by uuclean:

-ddirectory Clean directory instead of the spool directory.

-rr/tle Send mail to the owner of the file when it is deleted.

-ntime

-ppre

-ssys

-wfile

EXAMPLES

If file is specified, an entry is placed in file.

Delete files whose age is more than time (hours) if
the prefix test is satisfied. The default time is 72
hours.

Scan for files that begin with pre. Up to 25 -p argu­
ments may be specified. A -p without any pre fol­
lowing causes all files older than the specified time to
be deleted.

Examine only files destined for system sys. Up to 10
- s arguments may be specified.

Find those files older than time (hours); however, the
files are not deleted. If the argument file is present,
the warning is placed in file; otherwise, the warnings
go to the standard output. The default action for
uuclean is to remove files that are older than a
specified time (see the -n flag option).

uuclean -pT -pRC -nO -m

removes all files in /usr/spool/uucp with a prefix of Tor RC
and mails notifications to the owners of the removed files.

February, 1990
Revision C

1

uuclean(IM)

FILES
/usr/lib/uucp/uuclean
/usr/lib/uucp

/usr/spool/uucp
/usr/spool/LOGDEL

SEE ALSO
cron(1M), uucp(1C), uux(IC).

2

uuclean{lM)

Directory with commands
used by uuclean internally
Spool directory
Record of deletions

February, 1990
RevisionC

uushell(lM)

February, 1990
Revision C

See uucico(lM)

uushell (1M)

1

uusub(1M) uusub(IM)

NAME
u us ub - monitor UUCP network

SYNOPSIS
/usr /bin/uusub [-asys] [-csys] [-dsys] [-f] [-1] [-r]
[-uhr]

DESCRIPTION

1

uusub defines a uucp subnetwork and monitors the connection
and traffic among the members of the subnetwork. The following
flag options are available:

-asys Add sys to the subnetwork.

-dsys Delete sys from the subnetwork.

-1 Report the statistics on connections.

- r Report the statistics on traffic amount.

- f Flush the connection statistics.

-uhr Gather the traffic statistics over the past hr hours.

-csys Exercise the connection to the system sys. If sys is
specified as a 11, then exercise the connection to all the
systems in the subnetwork.

The meanings of the connections report are:

sysname Hcall Hok time Hdev Hlogin Hnack Hother

where sysname is the name of the remote system, Hcall is the
number of times the local system tries to call sys since the last
flush was done, Hok is the number of successful connections, time
is the latest successful connect time, Hdev is the·number of unsuc­
cessful connections because of no available device (for example,
ACU), Hlogin is the number of unsuccessful connections because
of login failure, Hnack is the number of unsuccessful connections
because of no response (for example, line busy, system down),
and Hother is the number of unsuccessful connections because of
other reasons.

The meanings of the traffic statistics are:

sysname sfile sbyte rfile rbyte

where sysname is the name of the remote system, sfile is the
number of files sent and sbyte is the number of bytes sent over the
period of time indicated in the latest uusub command with the -
uhr flag option. Similarly, rfile and rbyte are the numbers of files

February, 1990
RevisionC

uusub(1M) uusub(1M)

and bytes received.

EXAMPLES
uusub -c all -u 24

is typically started by cron(1M) once a day.

FILES
/usr/bin/uusub
/usr/spool/uucp/SYSLOG
/usr/lib/uucp/L sub
/lib/uuCp/R_sub-

SEE ALSO
uucp(1C), uustat(1C).

February, 1990
Revision C

system log file
connection statistics
traffic statistics

2

uuxqt(lM) uuxqt(lM)

NAME
uuxqt - UUCP execution file interpreter

SYNOPSIS
/usr / lib/uucp/uuxqt [-xdebug]

DESCRIPTION
uuxqt interprets "execution files" created on a remote system
via uux(1C) and transferred to the local system via uucico(1M).
When a user uses uux to request remote command execution, it is
uuxqt that actually executes the command. Normally, uuxqt is
forked from uucico to process queued execution files; for de­
bugging, it may also be run manually by the UUCP administrator.

uuxqt runs in its own subdirectory,
/usr / spool/uucp/ . XQTDIR. It copies intermediate files to
this directory when necessary.

FILES
/usr/spool/uucp/LCK.XQT
/usr/lib/uucp/L.cmds

/usr/lib/uucp/USERFILE

/usr/spool/uucp/LOGFILE
/usr/spool/uucp/LCK.XQT
/usr/spool/uucp/X./

/usr/spool/uucp/.XQTDIR

SEE ALSO
uucp(1C), uux(lC), uucico(1M).

1

Remote command permis­
sions list
Remote directory tree per­
missions list
UUCP system activity log
uuxqt lock file
Incoming execution file
directory
uuxqt running directory

February, 1990
RevisionC

vipw(lM) vipw(lM)

NAME
vi pw - edit the password file

SYNOPSIS
vipw

DESCRIPTION
vipw edits the password file while setting the appropriate locks,
and does any necessary processing after the password file is un­
locked. If the password file is already being edited, then you will
be told to try again later. The vi editor will be used unless the en­
vironment variable EDITOR indicates an alternate editor. vipw
performs a number of consistency checks on the password entry
for root, and will not allow a password file with a "mangled"
root entry to be installed.

FILES
/etc/vipw

/ etc/ptmp temporary lock file for editing

SEE ALSO
passwd(l), passwd(4).

February, 1990
RevisionC

1

volcopy(lM) volcopy(lM)

NAME
volcopy, labeli t - copy file systems with label checking

SYNOPSIS
/etc/volcopy [-a] [-bpidensity] [-buf] [-feetsize] [­
reelnum] [-s]fsname speciall volname} special2 volname2

/etc/labelit special r/sname volume [-nll

DESCRIPfION

1

volcopy makes a literal copy of the file system using a blocksize
matched to the device. Flag options are

-a Invokes a verification sequence requiring a positive
operator response instead of the standard 10-second de­
lay before the copy is made,

-s Invokes the DEL if wrong verification sequence.
(default)

Other flag options are used only with tapes:

-bpidensity Bits-per-inch (that is, B 0 0/16 00/6250).

-feetsize Size of reel in feet (that is, 1200/2400).

-reelnum Beginning reel number for a restarted copy.

-buf Use double buffered I/O.

The program requests length and density information if it is not
given on the command line or is not recorded on an input tape la­
bel. If the file system is too large to fit on one reel, volcopy will
prompt for additional reels. Labels of all reels are checked.
Tapes may be mounted alternately on two or more drives. If
volcopy is interrupted, it will ask if the user wants to quit or
wants a shell. In the latter case, the user can perform other opera­
tions (for example, labeli t) and return to volcopy by exiting
the new shell.

The fsname argument represents the mounted name (for example,
root, u1, and SO forth) of the file system being copied.

The special argument should be the physical disk section or tape
(for example, / dev / rds k / c 0 dO sO, / dev / rmt / Om, and so
forth).

The volname is the physical volume name (for example, pk3,
t0122, and so forth) and should match the extemallabel sticker.
Such label names are limited to six or fewer characters. volname
may be - to use the existing volume name.

February, 1990
Revision C

volcopy(1M) volcopy(IM)

speciall and yolname} are the device and volume from which the
copy of the file system is being extracted. The arguments special2
and volname2 are the target device and volume.

The arguments fsname and yolname are recorded in the last 12
characters of the superblock (char fsname [6], vol­
name [6] ;).

labeli t can be used to provide initial labels for unmounted disk
or tape file systems. With the optional arguments omitted, 1 a -
beli t prints current label values. The -n option provides for io­
itiallabeling of new tapes only (this destroys previous contents).

EXAMPLES
volcopy newsys /dev/rdsk/cOdOsO 1 /dev/rdsk/cldOsO 1

copies volume 1 of the file system labeled newsys which is
mounted on /dev/rdsk/cOdOsO onto volume 1 of
/dev/rdsk/cldOsO.

labelit /dev/rdsk/cldOsO oldsys save

relabels the file system mounted on / dev / rds k / c 1 dO s 0 with a
new fsname of oldsys and a new yolname of save.

FILES
/etc/volcopy
/etc/labelit
/etc/log/filesave.log

SEE ALSO
sh(I), fs(4).

BUGS
Only device names beginning with / dev / rmt are treated as
tapes.

labeli t will not work on a cartridge tape system, since such a
tape cannot be used as a file system. As a result, volcopy can­
not be used with cartridge tapes, since it requires the tape to be la­
beled by labelit.

February, 1990 2
Revision C

wall(lM) wall(lM)

NAME
wall - write to all users

SYNOPSIS
Jete/wall

DESCRIPTION
wall reads its standard input until an end-of-file. It then sends
this message to all currently logged in users preceded by:

Broadcast Message from •••

It is used to warn all users, typically prior to shutting down the
system.

The sender must be superuser to override any protections the users
may have invoked (see mesg(1».

EXAMPLES
wall

will broadcast the standard input to all users who are not protected
against receiving messages by the mesg command.

FILES
Jete/wall
/dev/tty*

SEE ALSO
mesg(l), wri te(l).

DIAGNOSTICS
"Cannot send to ... " when the open on a user's tty file
fails.

1 February, 1990
RevisionC

whodo(IM) whodo(1M)

NAME
whodo - who is doing what

SYNOPSIS
/etc/whodo

DESCRIPTION
whodo produces merged, reformatted, and dated output from the
who(l) and ps(1) commands.

EXAMPLES
/etc/whodo

will return something like the following:

Fri Aug 21 16:13:39 PDT 1987
A/UX
console judy 15:55

console 9140 0:00 ps
console 9141 0:01 remsh
console 9142 0:01 'csh

FILES
/etc/whodo
/etc/passwd

SEE ALSO
ps(I), who(I).

February, 1990
Revision C

1

wtmpfix(IM)

See fwtmp(1M)

1

wtmpfix(IM)

February, 1990
RevisionC

ypbind(IM)

February, 1990
Revision C

See ypserv(IM)

ypbind(IM)

1

ypinit(lM) ypinit(lM)

NAME
ypini t - build and install yellow pages database

SYNOPSIS
ypinit -m

ypini t -s master-name

DESCRIPTION
ypinit sets up a yellow pages (YP) server's database. It can be
used to set up a master server or a slave server. You must be the
superuser to run it. It asks a few questions, which are self­
explanatory, and reports success or failure to the terminal.

It sets up a master server using the simple model in which that
server is master to all maps in the data base. This is the way to
bootstrap the yP system; later if you want you can change the as­
sociation of maps to masters. All databases are built from scratch,
either from information available to the program at runtime, or
from the ASCII data base files in / etc. These files are listed
below under FILES. All such files should be in their traditional
form, rather than the abbreviated form used on client machines.

A yP database slave server is set up by copying an existing data­
base from a running server. The master name argument should
be the host name of yP server, which is eIther actually the master
server for all the maps, or a server the data base of which is be­
lieved to be up-to-date and stable.

FLAG OPTIONS
-m Indicates that the local host is to be the yP master.

-s Set up a slave database. master _name must be an existing,
reachable yP server.

FILES
/ete/yp/ypinit
/ete/passwd
fete/group
fete/hosts
fete/networks
/ete/serviees
/ete/protoeols
/ete/netgroup
fete/ethers

1 February, 1990
RevisionC

ypinit(1M) ypinit(1M)

SEE ALSO
makedbm(1M), yprnake(1M), yppush(lM), ypserv(lM),
ypxfr(1M), ypfiles(4).

February, 1990
Revision C

2

ypmake(IM) ypmake(IM)

NAME
ypmake - rebuild yellow pages database

SYNOPSIS
ed /ete/ypi make [map] [variable ...]

DESCRIPTION
The file Makefile in / ete/yp is used by make for building
the yellow pages (YP) database. With no arguments, make
creates dbm databases for any yP maps that are out-of-date and
then executes yppush(lM) to notify slave databases that there
has been a change.

If you supply a map on the command line, make will update that
map only. Typing make passwd will create and do a yppush
of the password database (assuming it is out of date).

Likewise, make hosts and make networks will create and
do a yppush of the databases derived from the host and network
files, jete/hosts and jete/networks.

There are three special variables that can be specified on the com­
mand line.

DIR Gives the directory of the source files; it defaults to
/ete/.

NOPUSH When non-null, inhibits doing a yppush of the new
database files. The default is the null string.

DOM Used to construct a domain other than the master's
default domain. The default is the current domain­
name taken from domainname(I).

During the make process, files are created with the extension
. time. These are used by the Makefile to determine which
databases need to be rebuilt Two programs, stdhosts and
revnetgroup, are used exclusively by the Makefile to refor­
mat certain files before database processing.

FILES

1

/ete/yp/Makefile
/ete/yp/passwd.time
/ete/yp/group.time
/ete/yp/hosts.time
/ete/yp networks.time
/ete/yp/proteols.time
/ete/yp/serviees.time

February, 1990
RevisionC

ypmake(IM)

/etc/yp/revnetgroup
/etc/yp/stdhosts

SEE ALSO
make(I), makeclbm(lM), ypserv(lM).

February, 1990
Revision C

ypmake(IM)

2

yppasswdd{IM) yppasswdd{lM)

NAME
yppasswdd - server for modifying yellow pages password file

SYNOPSIS
/usr/etc/rpc.yppasswddfile [-margl arg2 ...]

DESCRIPTION
yppasswdd is a server that handles password change requests
from yppasswd(I). It changes a password entry infile, which is
assumed to be in the format of passwd(4). An entry infile will
only be changed if the password presented by yppasswd(l)
matches the encrypted password of that entry.

If the -m flag option is given, then after file is modified, a make(l)
will be performed in / et c / yp. Any arguments following the
flag will be passed to make.

This server is not run by default, nor can it be started up from
inetd{IM). If it is desired to enable remote password updating
for the yellow pages, then an entry for yppasswdd should be put
in the /etc/inittab file of the host serving as the master for
the yellow pages passwd file.

EXAMPLES
If the yellow pages password file is stored as
/etc/yp/src/passwd, then to have password changes pro­
pagated immediately, the server should be invoked as

/usr/etc/rpc.yppasswdd /etc/yp/src/passwd -m \
passwd DIR=/etc/yp/src

Note: The above command can be entered on one line by
omitting the backslash.

FILES
/usr/etc/rpc.yppasswdd
/etc/yp/Makefile

SEE ALSO
yppasswd(1), ypmake{lM), ypwhich{IM), passwd(4), yp­
files(4),
A/UX Network System Administration.

CAVEAT

1

This server will eventually be replaced with a more general ser­
vice for modifying any map in the yellow pages

February, 1990
Revision C

yppoll(IM) yppoll(1M)

NAME
yppoll - what version of a yP map is at a yP server host

SYNOPSIS
yppoll [-h host] [-d domain] mapname

DESCRIPTION
yppoll asks a ypserv process what the order number is, and
which host is the master yP server for the named map. If the
server is a v.l yP protocol server, yppo 11 uses the older proto­
col to communciate with it In this case, it also uses the older di­
agnostic messages in case of failure.

FLAG OPTIONS
-h host

Ask the ypserv process at host about the map parameters.
If host isn't specified, the yP server for the local host is used.
That is, the default host is the one returned by
ypwhich(1M). host may be specified either as a name or an
Internet address of the form ww.xx.yy.zz.

-ddomain
Use domain instead of the default domain.

FILES
/etc/yp/yppoll

SEE ALSO
ypserv(1M), ypfiles(4).
A/UX Network Applications Programming.

February, 1990
RevisionC

1

yppush(IM) yppush(IM)

NAME
yppush - force propagation of a changed yP map

SYNOPSIS
yppush [-d domain] [-v] mapname

DESCRIPTION
yppush copies a new version of a Yellow Pages (YP) map from
the master yP server to the slave yP servers. It is normally run
only on the master yP server by the Makefile in / etc/yp
after the master databases are changed. It first constructs a list of
yP server hosts by reading the yP map yps rv s within the
domain. Keys within the map ypsrvs are the ASCII names of
the machines on which the yP servers run.

A "transfer map" request is sent to the yP server at each host,
along with the information needed by the transfer agent (the pro­
gram which actually moves the map) to call back the yppush.
When the attempt has completed (successfully or not), and the
transfer agent has sent yppush a status message, the results may
be printed to standard ouput. Messages are also printed when a
transfer is not possible; for instance when the request message is
undeliverable, or when the timeout period on responses has ex­
pired.

Refer to ypfiles(4) and ypserv(1M) for an overview of the
yellow pages.

FLAG OPTIONS
-d Specify a domain.

-v Verbose. This causes messages to be printed when each
server is called, and for each response. If this flag is omitted,
only error messages are printed.

FILES
/etc/yppush
/ etc/yp/ domainname/ypsrvrs. dir
/etc/yp/domainname/ypsrvrs .pag

SEE ALSO

1

ypserv(1M), ypxfr(1M), ypfiles(4).
A/UX Network Applications Programming.

February, 1990
Revision C

yppush(lM) yppushOM)

BUGS
In the current implementation (version 2 yP protocol), the transfer
agent is ypxfr, which is started by the ypserv program. If
yppush detects that it is speaking to a version 1 yP protocol
server, it uses the older protocol, sending a version I
YPPROC GET request and issues a message to that effect. Unfor­
tunately, there is no way of knowing if or when the map transfer is
performed for version 1 servers. yppush prints a message saying
that an "old-style" message has been sent. The system adminis­
trator should later check to see that the transfer has actually taken
place.

February, 1990
Revision C

2

ypserv(lM) ypserv(lM)

NAME
ypserv, ypbind - yellow pages server and binder processes

SYNOPSIS
/etc/ypserv
/etc/ypbind

DESCRIPTION

1

The yellow pages (YP) provides a simple network lookup service
consisting of databases and processes. The databases are dbm(3)
files in a directory tree rooted at / etc/yp. These files are
described in ypfiles(4). The processes are / etc/ypserv,
the yP database lookup server, and /etc/ypbind, the yP

binder. The programmatic interface to yP is described in
ypclnt(3N). Administrative tools are described in
yppush(lM), ypxfr(1M), yppoll(lM), ypwhich(lM), and
ypset(IM). Tools to see the contents of yP maps are described
in ypcat(lM), and ypmatch(l). Database generation and
maintenance tools are described in ypini t(IM), ypmake(IM),
and makedbm(lM).

Both ypserv and ypbind are daemon processes typically ac­
tivated at system startup time from /etc/inittab. ypserv
runs only on yP server machines with a complete yP database.
ypbind runs on all machines using YP services, that is, both yP

servers and clients.

The ypserv daemon's primary function is to look up information
in its local database of YP maps. The operations performed by
ypserv are defined for the implementor by the "YP protocol
specification," and for the programmer by the header file
<rpcsvc/ypyrot. h>. Communication to and from ypserv
is by means of RPC calls. Lookup functions are described in
ypclnt(3N), and are supplied as C-callable functions in
/lib/libc. There are four lookup functions, all of which are
performed on a specified map within some yP domain: Ma t ch,
Get_first, Get_next, and Get_all. The Match operation
takes a key, and returns the associated value. The Ge t fir s t
operation returns the first key-value pair from the map, and
Get next can be used to enumerate the remainder. Get all
ships the entire map to the requester as the response to a SIngle
RPCrequest

February, 1990
RevisionC

ypserv(lM) ypserv(lM)

Two other functions supply information about the map, rather than
map entries: Get order number, and Get master name.
In fact, both order number-and master name eXist in the -map as
key-value pairs, but the server will not return either through the
normal lookup functions. (If you examine the map with
makedbm(lM), however, they will be visible.)

Other functions are used within the yP subsystem itself, and are
not of general interest to yP clients. They include
Do-you_serve_this_domain?, Transfer_map, and
Reinitialize internal state. - -
The function of ypbind is to remember information that allows
client processes on a single node communicate with some yp­
serv process. ypbind must run on every machine which has
yP client processes; ypserv mayor may not be running on the
same node, but must be running somewhere on the network.

The information ypbind remembers is called a binding: the as­
sociation of a domain name with the internet address of the yP

server, and the port on that host at which the ypserv process is
listening for service requests. The process of binding is driven by
client requests. As a request for an unbound domain is received,
the ypbind process broadcasts on the net. trying to find a yp­
serv process that serves maps within that domain. Since the
binding is established by broadcasting, there must be at least one
ypserv process on every net Once a domain is bound by a par­
ticular ypbind, that same binding is given to every client process
on the node. The ypbind process on the local or on a remote
node may be queried for the binding of a particular domain by us­
ing the ypwhich(l) command.

Bindings are verified before they are given out to a client process.
If ypbind is unable to speak to the ypserv process to which it's
bound, it marks the domain as unbound, tells the client process
that the domain is unbound. and tries to bind the domain once
again. Requests received for an unbound domain will fail im­
mediately. In general, a bound domain is marked as unbound
when the node running ypserv crashes or gets overloaded. In
such a case, ypbind will to bind any yP server (typically one
that is less-heavily loaded) available on the net

ypbind also accepts requests to set its binding for a particular
domain. The request is usually generated by the yP subsystem it­
self. ypset(1M) is a command to access the Set_domain fa-

February. 1990
Revision C

2

ypserv(lM) ypserv(lM)

cility. It is for unsnarling messes, not for casual use.

Note: If the file /etc/yp/ypserv .log exists when
ypserv starts up, log information will be written to this
file when error conditions arise.

FILES
/etc/ypserv
/etc/ypbind

SEE ALSO

3

ypcat(lM), ypmatch(1M), yppush(lM), ypwhich(IM),
ypxfr(1M), ypset(lM), ypclnt(3N), ypfiles(4).
A/UX Network Applications Programming.

February, 1990
RevisionC

ypset(lM) ypset(lM)

NAME
ypset - point ypbind at a particular server

SYNOPSIS
ypset [-VI] [-h host] [-d domain] server

ypset [-V2] [-h host] [-d domain] server

DESCRIPTION
ypset tells ypbind to get yP services for the specified domain
from the ypserv process running on server. If server is down,
or isn't running ypserv, this is not discovered until a yP client
process tries to get a binding for the domain. At this point, the
binding set by ypset will be tested by ypbind. If the binding is
invalid, ypbind will attempt to rebind for the same domain.

ypset is useful for binding a client node which is not on a broad­
cast net, or is on a broadcast net which isn't running a YP server
host. It also is useful for debugging yP client applications, for in­
stance, where a yP map only exists at a single yP server host

In cases where several hosts on the local net are supplying yP ser­
vices, it is possible for ypbind to rebind to another host even
while you attempt to find out if the ypset operation succeeded.
That is, you can type ypset hostl and then ypwhich, which
replies: host2, which can be confusing. This is a function of the
yP subsystem's attempt to load-balance among the available yP

servers, and occurs when hostl does not respond to ypbind be­
cause it is not running ypserv (or is overloaded), and host2,
running ypserv, gets the binding.

server indicates the yP server to bind to, and can be specified as a
name or an IP address. If specified as a name, ypset will at­
tempt to use yP services to resolve the name to an IP address.
This will work only if the node has a current valid binding for the
domain in question. In most cases, server should be specified as
an IP address.

Refer to ypfiles(4) and ypserv(IM) for an overview of the
yellow pages.

FLAG OPTIONS
-VI Bind server for the (old) Version 1 yP protocol.

-V2 Bind server for the (current) Version 2 YP protocol.

February,1990
Revision C

If no version is supplied, ypset first attempts to set
the domain for the (current) Version 2 protocol. If

1

ypset(1M) ypset(IM)

-h host

this attempt fails, ypset, then attempts to set the
domain for the (old) Version 1 protocol.

Set ypbind's binding on host instead of locally.
The argument host can be specified as a name or as
an IP address.

-d domain Use domain instead of the default domain.

FILES
/etc/yp/ypset

SEE ALSO

2

ypserv(IM), ypwhich(1M), ypfiles(4).
A/UX Network Applications Programming.

February, 1990
RevisionC

ypxfr(IM) ypxfr(IM)

NAME
ypxf r - transfer a yP map from some yP server to here

SYNOPSIS
ypxfr [-f] [-h host] [-d domain] [-c] [-c tid prot ipadd
port] mapname

DESCRIPTION
ypxfr moves a yP map to the local host by making use of nor­
mal yP services. It creates a temporary map in the directory
/ etc/yp/ domainname (which must already exist), fills it by
enumerating the map's entries, fetches the map parameters (mas­
ter and order number) and loads them. It then deletes any old ver­
sions of the map and moves the temporary map to the real map­
name.

If ypxfr is run interactively, it writes its output to the terminal.
However, if it's invoked without a controlling terminal, and if the
log file / etc/yp/ypxfr .log exists, it will append all its out­
put to that file. Since ypxfr is most often run from cron(IM),
or by ypserv, you can use the log file to retain a record of what
was attempted, and what the results were.

For consistency between servers, ypxfr should be run periodi­
cally for every map in the yP data base. Different maps change at
different rates: the services. byname map may not change
for months at a time, for instance, and may therefore be checked
only once a day in the wee hours. You may know that
mail. aliases or hosts. byname changes several times per
day. In such a case, you may want to check hourly for updates. A
crontab(1) entry can be used to perform periodic updates au­
tomatically. Rather than having a separate crontab entry for
each map, you can group commands to update several maps in a
shell script Examples (mnemonically named) are in / et c / yp:
ypxfr_ld. sh, ypxfr_2d. sh, and ypxfr_lh. sh. They
can serve as reasonable first cuts.

Refer to ypfiles(4) and ypserv(1M) for an overview of the
yellow pages.

FLAG OPTIONS
- f Force the transfer to occur even if the version at

the master is not more recent than the local ver­
sion.

February, 1990
Revision C

1

ypxfr(IM) ypxfr(IM)

-c Don't send a "Clear map" request to the local
ypserv process. Use this flag if ypserv is
not running locally at the time you are running
ypxfr. Otherwise, ypxfr will complain that
it can't talk to the local ypserv, and the
transfer will fail.

-h host Get the map from host, regardless of what the
map says the master is. If host is not specified,
ypx f r will ask the yP service for the name of
the master and try to get the map from there.
host may be a name or an internet address in the
form ww.xx.yy.zz.

-d domain Specify a domain other than the default domain.

-c tid prog ipadd port
This option is only for use by ypserv. When
ypserv invokes ypxfr, it specifies that
ypxfr should call back a yppush process at
the host with IP address ipaddr, registered as
protocol prot, listening on port port, and waiting
for a response to transaction tid.

FILES
/etc/ypxfr
/etc/yp/ypxfr.log
/etc/yp/ypxfr ld.sh
/etc/yp/ypxfr-2d.sh
/etc/yp/ypxfr=lh.sh

SEE ALSO

2

ypserv(1M), yppush(IM), ypfiles(4),
AIUX Network Applications Programming.

February, 1990
RevisionC

Table of Contents

Section 7: Drivers and Interfaces for Devices

in t ro(7) introduction to device drivers and interfaces
appletalk(7) .. general AppleTalk socket interface and STREAMS controls
console(7) .. keyboard/screen driver
error(7) .. error-logging interface
fd(7) ... 3.5-inch disk device driver
forwarder(7) .. forwarder device driver
gd(7) ... generic disk interface
kmem(7) .. see mem(7)
mem(7) an interface for access to core memory
mouse(7) .. mouse input device driver
mtio(7) interface conventions for magnetic tape devices
null(7) ... the null device file
nvram(7) nonvolatile memory/time of day clock interface
pty(7) .. pseudo terminal driver
serial(7) ... the on-board serial ports
streams(7) ... an interface for character I/O
sxt(7) .. pseudo-device driver
tc(7) Apple Tape Backup 40SC device driver
termio(7) ... general terminal interface
termios(7P) A!UX® POSIX general terminal interface
t t y(7) .. controlling terminal interface

Section 7

intro(7) intro(7)

NAME
intro - introduction to device drivers and interfaces

DESCRIPTION
The entries in this section provide useful information for users and
programmers, although programmers may be able to benefit more.

Users need to know what device files are typically associated with
which devices or ports so that the commands that accept device
files as arguments can be specified accurately. For example,
/dev/ttyO and /dev/ttyl refer to serial ports, and
/dev/dsk/eOdOsO through /dev/dsk/e7dOsO refer to
slice 0 of each of the hard disks set to SCSI ID 0 through 7.

To rebuild or make custom-named device files, users need to
know what major device numbers correspond to particular device
drivers, as well as the operational or addressing modes selected by
the minor device numbers associated with a particular device
driver. Note that the NUX autoconfiguration utilities automati­
cally create and remove device files (with default filenames)
whenever necessary for a particular device configuration they are
establishing (see autoeonfig(IM), neweonfig(IM), and
newunix(IM)).

This section also includes information helpful to readers who wish
to manipulate a device directly through its corresponding inter­
face. For example, you can format a cartridge tape through the
general rot device interface to tape devices. These device-level
interfaces allow access to device-specific functions, such as car­
tridge tape formatting, that would not normally be available as a
standard operation for all tape devices. Non-universal operations
typically would not be available through the flag options for the
standard programs, such as tar and epio, described in Section 1
of A/UX Command Reference.

Programmers who wish to write programs that can access all the
peculiarities of specific devices may find the standard I/O library
lacking the necessary capabilities. If you need to know this infor­
mation, Section 7 describes the special system calls, or ioctls, as­
sociated with particular device drivers.

The device files identified with the letter "P" following the sec­
tion number are part of the NUX POSIX environment. The
differences between the NUX environment and the A/UX POSIX
environment are described in A/UX Guide to POSIX, which is pro­
vided in A/UX Programming Languages and Tools, Volume 1.

February, 1990
Revision C

1

intro(7) intro(7)

2

User interface
Although a programmer knows that each device is controlled by a
designated device driver, this fact is usually less well known to
users. Because a disk device is selected and accessed properly
whenever files are manipulated, users are sheltered from learning
about the requirements of the disk device driver. However, for
devices other than disk devices, there are often various addressing
options or operating modes that require awareness from users.
While the provisions of the file system helps users transparently
access the correct disk device for read and write operations, other
devices require a more visible, low-level interface. To provide a
flexible way to access to these device-level and interface-level
features, A/UX stretches the file-system model to encompass
references to devices other than disks.

The file-system files that reference a device (or communcations
port) are called device files. Device files are special because the
data written to them does not usually reside on the disk. For ex­
ample, the device file for a terminal (/ dev / console) stays a
constant size when data is written to it. In such a case, the data is
not written to a disk file at all. Instead, the data is written to the ac­
tual device that the device file references.

When initially created, the device file is given two unchangeable
attributes that no other files have: a major device number that
selects a device driver, and a minor device number that selects a
particular device out of several possible devices, or a particular
operating mode from among several operating modes. The mean­
ing of the minor device number varies from device driver to dev­
ice driver. Selecting reading or writing operations for a device is
usually a function of the command line within which the device
filename appears: sometimes the command itself works unidirec­
tionally (restore, dump. bsd, fine); other times the com­
mand is bidirectional and the direction of data flow is determined
by flag options or associated arguments (tar, pax, epio, dd).

Device files are available for use only within certain command
lines. Usually, but not always, commands that accept device file as
arguments have metanames such as device-file or devname within
their syntax descriptions.

The device filenames are customarily derived from the hardware
configuration. However, some of the device filenames are seem­
ingly arbitrary for various historical reasons.

February, 1990
RevisionC

intro(7) intro(7)

Sometimes a device file references a port rather than an actual
device. For example. a printer connected through the printer port
can be referenced as /dev/ttyl. as described in seria1(7).
In this case. the device file references the first serial port. Conven­
tionally, you can use the first Macintosh serial port to attach a seri­
al printer. It is also possible to attach a modem or an A/UX user
terminal to this port.

Major and minor device numbers
Programs that support devices, such as hard disks and tape drives,
are known as device drivers. One device driver usually controls
all the instances of one type of device. The exception is the serial
device driver. It provides low-level support for a variety devices
that are capable of communicating over a serial communications
port. For example, a serial device driver helps control user termi­
nals, modems, serial printers. and similar serial input/output dev­
ices.

To allow many devices of the same type to be controlled by the
same device driver, each can be assigned a unique minor number
using mknod(IM). This number is passed to the device driver for
interpretation. By convention, the minor number may appear as
the last part of the name of the device file for particular classes of
devices. For example, / dev / tty 0 refers to the first serial port,
or the port with minor device number O. Note that this is a naming
convention only, and is achieved by using mknod. In reality, dev­
ice selection is realized through the minor number exclusively.
The -1 option of 1 s will show what major and minor device
numbers have been assigned to a device file of a particular name,
helping you verify whether a device file was named reasonably
well.

The minor number is often used by a device driver as an inidica­
tion of the intended operational modes. For example, the device
files for cartridge tape drives that contain an n suffix select a non­
rewinding mode of tape operation through a minor number that is
correctly interpreted by the device driver.

February, 1990
RevisionC

3

appletalk(7) appletalk(7)

NAME
appletalk - general AppleTalk socket interface and
STREAMS controls

DESCRIPTION

1

This manual page describes the AppleTalk I/O control calls (see
ioctl(2», device files, and the general nature of the NUX Ap­
pleTalk interface.

Before beginning, several points should be noted. The AppleTalk
library routines automatically set up and invoke the correct ioctl
requests that are necessary for most AppleTalk requirements.
While the ioctls give the programmer more control than the Ap­
pleTalk library routines, they require a much greater understand­
ing of the NUX implementation of AppleTalk. In addition, Ap­
pleTalk ioctl calls are subject to change, while AppleTalk library
functions will not change. It is, therefore, strongly recommended
that the library routines be used whenever possible instead of the
more complicated ioctl calls.

AppleTalk Protocols
AppleTalk is implemented as a protocol stack, consisting of a set
of layers, with one or more protocols per layer. This set of proto­
cols corresponds roughly to the layers of the Open Systems Inter­
connection (OSI) reference model published by the International
Standards Organization (ISO). Each layer is built on top of (and
uses) the previous layer. The order of layers, from lowest (closest
to the physical transport) to highest (closest to the application), is
as follows:

Link layer AppleTalk Link Access Protocol (ALAP)

Network layer

Transport layer

Session layer

Datagram Delivery Protocol (DDP)

AppleTalk Transaction Protocol (AlP)
Name Binding Protocol (NBP)
Routing Table Maintenance Protocol
(RTMP)

Zone Information Protocol (ZIP)
Printer Access Protocol (PAP)

The lower layers (ALAPIDDP) are normally used for new net­
work testing and development, such as building a new layer using
TCP/IP on top of DDP.

February, 1990
RevisionC

appletalk(7) appletalk(7)

The AppleTalk Model
Most AppleTalk protocol layers are implemented as Streams
modules. The two exceptions are the DDP and ALAP layers,
which are implemented as Streams drivers. The majority of appli­
cations require the programmer to push one or more modules into
the open stream in order to achieve the proper layering for that ap­
plication. The following diagram describes the NUX implemen­
tation of AppleTalk.

1----------1
1 1
1 at_printer 1

1 1
I-----_A ___ I

1 1

1 1

User Processes

1----------1
1 1
lat cho prnl
1 - - 1
I ______ A ___ I

1 1
1 1

1---------1
1 1
1 at nbpd 1

1 - 1

I---___ A __ I

1 1
1 1

I---v--------------v---------------v------I
1 1
1 Stream Head 1

1 1 I ______ A ______________ A _______________ A ___ I

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
I---v------I I---v------I Name 1 1

1 1 1 1 Binding 1 1

1 PAP 1 1 NBP 1 Module 1 1

1 1 1 1 1 1 Name
I-----_A ___ I I ______ A ___ I 1 1 Binding

Print 1 1 1 1 1 1 Daemon
Request 1 1 1 1 1 1 Module
Modules I---v------I 1 1 I---v------I

1 1 1 1 1 1

1 ATP 1 1 1 1 NBPD 1

I I I 1 1 1

1 ------ A --- 1 1 1 1 ------ A --- 1

1 1 1 1 1 1

1 1 1 1 1 1
I---v--------------v---------------v------I
1 1

1 Stream Driver: DDP/ALAP 1

1 1

1---1

The first application illustrated (atyrinter) shows the
configuration for communicating with a network print server. Note
that the A TP module must be pushed before the PAP module.
While it is possible to reverse the pushing order, unpredictable

February, 1990
RevisionC

2

appletalk(7) appletalk(7)

3

results can occur if this is done.

The second and third applications (at_choyrn and
at_nbpd) are normally used together. When AppleTalk is
brought up, a special application daemon, nbpd, is invoked. It
opens an AppleTalk socket and pushes the module acnbpd into
the stream. This application daemon is used by subsequent appli­
cations, such as acnvelkup(1), to open a socket and push the
module at nbp into the stream. Modules at nbp and
at_nbpd communicate at the ALAP level to complete users' re­
quests for name binding information.

February, 1990
Revision C

console(7) console(7)

NAME
console - keyboard/screen driver

DESCRIPTION
The keyboard and video screen driver provides access to the
system's console keyboard and screen. Running in its default
configuration, it provides emulation of an ANSI standard screen
and keyboard combination. Various ioctl commands allow the
user to configure it for use along with the mouse in a more interac­
tive environment

The screen driver is a streams based driver. Before use, a line dis­
cipline may have to be pushed onto the device's stream. Under
most conditions, this is done automatically by the operating sys­
tem. When an application opens / dev / console explicitly, and
it is not already open, it may be necessary to push such a line dis­
cipline. There are three ways to do this.

ioctl (fd, I_PUSH, line) ;

line yush (fd) ;

/etc/line_sane fd

Unconditionally pushes a line
discipline.

Pushes a line discipline if one
is not already pushed.

Same as previous description,
but as an application in a shell
script

In the previous examples,fd is a file descriptor of the open device.
The last two methods are preferred, as they will only push a line
discipline if required and they can be used on nonstreams drivers
without adverse effects.

When / dev / console is opened with a line discipline pushed
on it, it will respond to all the ioctls and modes described in
termio(7). Without the line discipline, it will only respond to
the flags described under c cflag in termio(7). Setting the
number of bits/character to CS 8 will put the screen into reverse
video when it is in terminal emulation mode.

ANSI Compatible Escape Sequences
The terminal emulator responds to the following ANSI escape se­
quences.

, \b'

February, 1990
Revision C

backspace-move 1 column
left

1

console(7)

, \r'

, \n'

, \t'

ESC ' ='
ESC ' >,

ESC 'D'

ESC 'M'
ESC '7'

ESC '8'

ESC ' [' , s'

ESC ' [' , u'

ESC ' [' , H'

ESC ' [' , f'

ESC ' [' [n] , A'

ESC ' [' [n] , B'

ESC ' [' [n] 'D'

ESC ' [' [n] , C'

ESC ' [' [n] , J'

ESC ' [' [n] , K'

ESC ' [' n 'L'
ESC ' [' n 'M'
ESC ' [' n ' @'

ESC ' [' n ' P'

ESC ' [' n 'm'

ESC ' [' n ' n'

2

console(7)

carriage return-move to
column 1

linefeed-move to next line

tab

turn on keypad mode

turn off keypad mode

line feed

scroll down

save cursor position

restore cursor position

save cursor position

restore cursor position

home cursor

home cursor

up n, if n = 0 go up 1

down n, if n = 0 go down 1

left n, if n = 0 go left 1

right n, if n = 0 go right 1

O->erase to end of page
1->erase to beginning of page
2->erase whole page

O->erase to end of line
1->erase from beginning of
line
2->erase whole line

scroll down n lines

scroll up n lines

insert n spaces

delete n characters

7 ->reverse video
O->normal video

6-> return cursor position as
the string

February, 1990
RevisionC

console(7) console(7)

ESC '[' row ' . , col 'R' ,

ESC ' [' n 'z' tab to n*8

ESC ' [' [ni] , . , [n2] , r' ,
move to column n2, line ni

ESC ' [' [ni] , . , [n2] , f' ,
set scrolling region from row
ni to row n2

ESC ' [' [nil , . , [n2] , H' ,
set scrolling region from row
ni to row n2

ESC ' [' , ?' , b' , h' enable scrolling region

ESC ' [' , ?' , b' , l' disable scrolling region

ESC ' [' , ?' , 5' , h' set to normal video (black on
white)

ESC ' [' , ?' , 5' , l' reverse video (white on black)

Note: Characters in single quotes (') are literal. ESC is
the escape character. Other symbols represent strings of
ASCII numbers which represent their decimal equivalent.
[n] represents an optional number. If it is not present, 0 is
used in its place. When sending row/column numbers to
the screen, the upper left comer has address row= 1,
column=1.

If the keyboard is not in "keypad mode," it returns the characters
on the keys. If it is in "keypad mode," then the following escape
sequences are generated:

KEY LEGEND SEQUENCE
o ESC '0' 'p'
1 ESC '0' 'q'
2 ESC ' 0' , r'
3 ESC ' 0' , s'
4 ESC '0' 't'
5 ESC '0' 'u'
6 ESC '0' 'v,
7 ESC ' 0' 'w'
8 ESC '0' 'x,
9 ESC '0' 'y'

February, 1990
RevisionC

3

console(7) console(7)

4

ENTER

Function Keys

ESC '0' 'n'
ESC '0' 'm'
ESC ' 0' , M'

On the Apple® Extended keyboard, the extra keys (the function
keys and the group of six keys above the arrow keys) are mapped
to the following simple key sequences:

KEY LEGEND SEQUENCE
FI SOH '@' CR
F2 SOH ' A' CR
F3 SOH ' B' CR
F4 SOH ' C' CR
F5 SOH 'D' CR
F6 SOH 'E' CR
F7 SOH 'F' CR
F8 SOH ' G' CR
F9 SOH ' H' CR
FlO SOH 'I' CR
Fll SOH ' J' CR
FI2 SOH ' K' CR
FI3 SOH ' L' CR
FI4 SOH 'M' CR
FI5 SOH 'N' CR
DEL SOH ' 0' CR
END SOH 'P' CR
PAGE DOWN SOH ' Q' CR
HELP SOH ' R' CR
HOME SOH ' S' CR
PAGE UP SOH ' T' CR

where SOH = 1 and CR = 13.

Note: These sequences end in a RETURN which makes the
NUX line discipline send the current input line to the
current reading process. While doing this (assuming nor-
mal terminal settings), the RETURN is translated to a new-
line character.

The CONTROL Key
The CONfROL key sets the 6th and 5th bits of a character to 0, re­
gardless of the key pressed. Thus, pressing CONlROL and w (octal
167) at the same time yields the same character as pressing CON­
TROL and W (octal 127) or CONlROL and 7 (octal 067), namely,

February, 1990
RevisionC

console(7) console(7)

(octal 027).

IOCTLS
The display responds to a large number of ioctls which affect
its behavior in many different ways. It responds to all the ioctls
defined in termio(7) in the normal manner. Since it is a streams
device, all other ioctls must be called using the streams indirect
ioctl call function, I STR. With this is passed a packet
describing the ioctl tobe executed. This packet is of type
struct strioctl and is described in sys/ stropts. h. It
has 4 fields.

ic cmd

ic len

ic timout

The command (ioctl) requested to be execut­
ed.

A pointer to any data to be read/written to by the
ioctl (parameters or returned results, for ex­
ample).

The size of the data in bytes.

A timeout (how long to wait for the ioctl to
complete before returning an error); -1 means
no timeout (or wait forever).

If s is a data structure of type struct strioctl, then an
ioctl call is made using a call of the following form.

ioctl(fd, I_STR, &s)

Further examples of such calls are given later in this document.

Screen ioctls fall into three main areas: control of the key­
board, control of the video generation hardware, and control of the
mouse. All the following ioctls, and the symbols defined with
them are defined in the include file s y s / v i de 0 • h.

Keyboard ioctls
The keyboard operates in two modes, either as an ANSI standard
keyboard generating characters in the normal manner, or in
"raw" mode where each keystroke is generated (both up and
down) and passed directly without any modification.

VIDEO RAW

February, 1990
Revision C

This ioctl puts the keyboard into
"raw" mode. The key codes returned
are the key codes directly from the key­
board (Refer to the keyboard docu­
mentation for a list of these.) The most
significant bit indicates whether the

5

console(7) console(7)

6

VIDEO ASCII

Video ioctls

keystroke is up or down. One excep­
tion is the mouse escape character (see
VIDEO_MOUSE later in this section).

This mode is an emulation of an ANSI
standard terminal keyboard (including
the keypad).

The video screen can be used in two different ways, either as a
terminal emulation (in which case the interface is in the normal
manner), or as a bit mapped screen, mapped into a process's ad­
dress space using the phys(2) system call. There is no explicit
way to shift from one mode to the other; one simply stops sending
characters to the terminal (including turning off ECHO) and writes
to the bitmap.

VIDEO SIZE

VIDEO SETDEF

VIDEO SETCOLOR

VIDEO ADDR

VIDEO REFRESH

This ioctl returns the size (in char­
acters) of the screen when used in ter­
minal emulation mode. The result is
two longs representing the horizontal
and vertical sizes.

This sets the screen to its default,
which is 1 bit per pixel mode, black
on white.

Takes a parameter of the type
video color that describes the
foreground and background colors to
which the screen is set.

This ioctl returns (as a longword)
the physical address of the video
RAM on the video board (suitable for
use in a phys(2) system call).

This ioctl rewrites the entire
screen, including the borders; it also
clears all text from the screen and
moves the cursor to the upper left
comer. It takes no parameters. It is
intended to be used by implementers
of utilities that write directly to the
screen (via phys(2), for example)
when they are exiting and wish to set

February, 1990
RevisionC

console(7)

VIDEO PIXSIZE

Mouse ioctls

console(7)

the screen back to a known state.
This is the only way to get the kernel
to rewrite the screen's borders.

This ioctl returns a parameter of
type struct video size (also
defined in <sys/video. h» in
which it places information about the
size of the screen in pixels. The data
structure contains three fields.

pix_scr_x The width of the
visible part of the
screen in pixels.

pix_scry The height of the
visible part of the
screen in pixels.

pix _ mem x The number of
pixels (both visi­
ble and invisible)
between the start
of a line and the
start of the next
line.

It is possible to attach the mouse to the keyboard device using the
VIDEO_MOUSE system call. This can happen only if the mouse is
not currently opened in any other way (see mouse(7». When in
mouse mode, changes in the mouse are converted into characters
and inserted into the keyboard's input stream. This mode is most
useful in conjunction with the keyboard mode VIDEO RAW. The
mouse input is always preceded by the - character
MOUSE_ESCAPE and can take one of two fonns depending on
whether the display is in VIDEO M BUTTON mode or not. If it
is, then the next character is a 1 or 0 depending on the state of the
mouse button (1 if it is down). In this mode, mouse information is
only placed into the input stream when the state of the mouse but­
ton changes. In the other mode, the display places 2 bytes into the
input stream whenever the mouse moves or the state of the button
changes. The 2 bytes have the following format.

Byte 0 Bit 7: The state of the mouse button-O for down.

February, 1990
RevisionC

7

console(7) console(7)

8

Byte 1

Bits 0-6: Two's complement of the mouse
movement in the Y axis since the last entry.

Bit 7: Always 1.

Bits 0-6: Two's complement of the mouse
movement in the X axis since the last entry.

The mouse ioctls are

VIDEO MOUSE

VIDEO NOMOUSE

VIDEO M BUTTON

VIDEO MALL

VIDEO M DELTA

VIDEO M ABS

Put the display into the
VIDEO MOUSE mode as
describCd earlier. This will fail if
the mouse is already in use.

Take the display out of
VIDEO MOUSE mode. This is
the default when the display is
opened for the first time.

Put the display into a mode
(described earlier) where changes
only in the mouse button find their
way into the keyboard input
stream.

This option makes all mouse
changes (including changes in
mouse position) to be put into the
keyboard's input stream. This is
the default when entering
VIDEO MOUSE mode.

This call returns the change in
mouse position since it was last
called (or since the display was
put into VIDEO MOUSE mode).
It returns two shorts (horizontal
displacement followed by verti­
cal).

This also works only in
VIDEO MOUSE mode; it returns
the absOlute mouse position (rela­
tive to 0 when the system was
booted). It returns two shorts
(horizontal displacement followed
by vertical).

February, 1990
RevisionC

console(7) console(7)

EXAMPLES
The following is an example of streams ioctls. It opens the
keyboard and removes any line disciplines (after first saving their
states); then it puts the display into VIDEO_RAW and
VIDEO MOUSE modes and reads the input, displaying it to the
standard output When a character code 1 (from the key "s") is
found, it stops and puts the display back into VIDEO_ASCI I and
VIDEO NOMOUSE modes. It then pushes the line discipline back
on and restores its state.
#include <sys/stropts.h>
#include <sys/termio.h>
#include <sys/video.h>
#include <fcntl.h>
main ()
{

struct termio t;
char c;
short ss;
int fd, line;
struct strioctl s;

fd = open("/dev/console",
ioctl(fd,TCGETA,&t);

o RDWR); /*open the keyboard*/

line = ioctl(fd,I_POP,O);

s.ic timout = -1;

s.ic_len = 0;
s.ic cmd = VIDEO RAW;
if (ioctl(fd,I_STR,&s) < 0)

goto quit;
s.ic_len = 0;
s.ic cmd = VIDEO MOUSE;
if (ioctl(fd,I_STR,&s) < 0)

goto quit;
ioctl(fd,I_FLUSH,FLUSHRW);

- /*save the old tty*/
/*state*/
/*remove the line*/
/*discipline and*/
/*remember if there*/
/*was one*/
/*set the streams*/
/*timeout to infinity*/
/*put keyboard into*/
/*raw mode*/

/*attach to mouse*/

/*flush input to*/
/*put us in a known*/
/*starting state*/

for(;;) /*loop reading input*/
if (read(fd,&c,l) < 0) /*and displaying it*/

break;
if (c == MOUSE_ESCAPE)

if (read (fd, &ss, s) < 0)
break;

printf("m = Ox%04x\n",c&Oxffff);
continue;

February, 1990 9
Revision C

console(7) console(7)

if (c == 1)

break;

/*quit on char.*/
/*code 1*/

printf("c Ox%02x\n",c&Oxff);

quit:
s. ic_len = 0;

s.ic cmd = VIDEO NOMOUSE;
ioctl(fd,I STR,&;);
s. ic_len =-0;
s.ic cmd = VIDEO ASCII;
ioctl(fd,I STR,&;);
if (line =~ 0)

/*set the keyboard*/
/*back to*/
/*a sane state*/

ioctl (fd, I_PUSH, "line");
/*if required*/
/*push a line*/
/*discipline*/
/*restore its modes*/ ioctl(fd,TCSETA,&t);

FILES
/dev/console
/dev/mouse
/usr/include/sys/video.h
/usr/include/sys/stropts.h
/usr/include/termio.h

SEE ALSO

10

line_sane(IM), ioctl(2), phys(2), lineyush(3),
mouse(7), termio(7).

February, 1990
RevisionC

error(7) error(7)

NAME
error - error-logging interface

DESCRIPTION
Minor device 0 of the error driver is the interface between a
process and the system's error-record collection routines. Only a
single process with superuser permission may open the driver for
reading. Each read retrieves an entire error record; the record is
truncated if the read request is for less than the record's length.

FILES
/dev/error

SEE ALSO
errdemon(lM).

February, 1990
Revision C

1

fd(7) fd(7)

NAME
fd - 3.5-inch disk device driver

DESCRIPTION

1

The fd device driver provides an interface to two types of Ap­
ple® 3.5-inch disk drives. The standard drive supports a single­
sided format providing 400 kilobytes (KB) of storage and a
double-sided format providing 800 KB of storage. The Apple Su­
perDrive (formerly named the Apple FDHDTM drive) supports the
400 KB and 800 KB formats as well as industry-standard 720 KB
and 1440 KB double-sided fonnats. The storage format, or densi­
ty, is associated with individual floppy disks when they are for­
matted. Partitions and partition maps are not supported for floppy
disks.

Three main classes of floppy access are supported: fixed-density
devices, autodensity devices, and special ioctl devices.

Fixed-density Devices
These devices require that the floppy disk match a specified
density. If a fixed-density device encounters the wrong den­
sity disk, the driver immediately ejects the disk, prints an in­
formational console message, and returns EINVAL.

Autodensity Devices
These devices automatically adjust to any valid floppy disk
format as long as they can be supported by the drive.

Special ioctl Devices
These devices are used only for issuing special ioetl calls
(FD GETMETER, FD SETMETER, FD GETTUNE, and
FD SETTUNE). During an open system call, no
check is made for the presence of a floppy disk or the current
status of the device, that is, the disk drive. This allows these
special ioetl calls to be used at any time without interfering
with other users of the device. No other I/O operations are
allowed to a special ioetl device. Both the AL EJECT and
GD_PARTSIZE calls are also allowed for special ioetl dev­
ices.

The driver accepts a variety of the following ioctl functions. The
first parameter for each of these functions is file-descriptor, which
should be the raw device file corresponding to the drive, such as
/dev/rdsk/c8d?sO.

February, 1990
Revision C

fd(7) fd(7)

ioctl (file-descriptor, AL EJECT, 0)
Eject the disk. The file descriptor corresponds to the charac­
ter device for the floppy device file. It may be appropriate to
unmount a file system before ejecting the disk.

ioctl <file-descriptor, GD _PARTSIZE, 0)
Return the fonnat of the media. The value returned is the
number of blocks on the disk, as follows:

800 400KB
1600 800 KB
1440 720KB
2880 1440 KB
o unfonnatted
E I 0 empty drive

ioctl (file-descriptor, UIOCFORMAT, fmt)
ioctl (file-descriptor, FD FMTONLY, fmt)
ioctl (file-descriptor, FD - VFYONLY, fmt)

Use UIOCFORMAT to format and verify the disk in one
operation; use FD FMTONLY or FD VFYONLY to either for­
mat or verify the disk as a one operation. The third parame­
ter to this function call contains the address of a
di s k forma t structure that is defined in
/usr/include/sys/diskformat.h. The d lhead
field of this structure detennines the number of sides to be
fonnatted. If it is set to 0, the disk is formatted in a one­
sided, 400 KB format. If the same d Ihead field is
nonzero, the d dens field of the structure determines the
density to which the disk is to be formatted. Values for
d dens are as follows:

400 400KB
720 720KB
800 800KB
1440 1440 KB

All other fields of the di s k forma t structure are ignored by
most device drivers. However, d fcyl and d lcyl may
sometimes be used. For example, the floppy device driver
uses these two quantities as the first and last cylinders to be
fonnatted.

If both d lhead and d dens are set to their default
values (DISK_DEFAULT), -the density that is selected is

February, 1990
Revision C

2

fd(7) fd(7)

3

based on the device class. Autodensity devices, such as
/ dev / rfd/ dO, default to a double-sided 800 KB format for
standard media or default to a double-sided 1440 KB format
for high-density media. Fixed-density devices, such as
/ dev / rfd/ dlm72 0, create a fixed-density format only.

Conflicting density specifications, such as setting d dens
to 720 in an attempt to format the media in the drive refer­
enced through /dev/rfd/dOm1440, causes EINVAL to
be returned. Similarly, if the requested density is unavailable
for the given device and current media, EINVAL is returned.
Examples include referencing a non-SuperDrive drive with
/ dev / rfd/ dOm14 4 0 or attempting to format a low­
density disk in a .1440 KB format.

Before an ioctI function for formatting floppy disks is
honored, the device must have been opened in exclusive-use
mode with the O_EXCL flag.

ioctl (file-descriptor, FD GETMETER, meter)
Return the current statistics counters for the file-descriptor
device driver. The value of meter is the address of an
fd meter structure, as defined in
/u;r/include/sys/fdioctl.h.

ioctl (file-descriptor, FD SETMETER, meter)
Copy the fd meter structure at meter into the internal
memory of the device driver. This is useful to clear the
counters after doing a FD _ GETMETER to gather statistics.

ioctl (file-descriptor, FD GETSTAT, int)
Return the current status-of the drive or media as a bit mask:

STAT FDHD (OxOI)
The drive is SuperDrive.

STAT 2SIDED (Ox02)
The drive is a double-density drive.

STAT NODRIVE (Ox04)
No drive is present.

STAT NODISK (Ox08)
No 3.5-inch disk is in the drive.

STAT WRTENAB (Oxl0)
The 3.5-inch disk in the drive is write-enabled.

February, 1990
RevisionC

fd(7) fd(7)

STAT 1MBMEDIA (Ox20)
The 3.5-inch disk in the drive is not a high-density disk.

ioctl (file-descriptor, FD GETTUNE, tune)
Return the current settings of the tunable error thresholds in
the fd device driver. The parameter tune is the address of a
fd tune structure as defined in the header file
/usr/include/sys/fdioctl.h.

ioctl <file-descriptor, FD SETTUNE, tune)
Copy the f d tune structure at tune into the internal
memory of the device driver.

FILES
Fixed-density Devices

/dev /fd/d [Ol]mdens
/ dev / rfd/ d [01] mdens

where dens is specified as 400, 720,800, or 1440.

Autodensity Devices
/dev/dsk/c8d[01]sO
/dev/rdsk/c8d[01]sO
/dev/floppy[Ol]
/dev/rfloppy[Ol]
/dev/fd/d[Ol]
/dev/rfd/d[Ol]

Special ioctl Devices
/dev/rfd/dOx
/dev/rfd/dlx

Header Files
/usr/include/sys/ssioctl.h
/usr/include/sys/fdioctl.h

SEE ALSO
cpio(1), eject(1), tar(1), diskformat(lM),
mkfs(1M), mount(lM), umount(lM), ioctl(2), open(2).

WARNINGS
Changing error thresholds with the tune parameter should not be
necessary. Adjustments should be made with extreme care!

NOTES
Appending e to a device file causes the driver to eject the disk on
close. Appending w causes open to block until a disk is insert­
ed; the wait is interruptible, returning EINTR. Appending ew

February, 1990
RevisionC

4

fd(7) fd(7)

5

does both.

High-density disks should only be fonnatted as 1440 KB while
standard disks may only be formatted as 400 KB, 720 KB, or 800
KB. It is possible to format high-density disks as 400 KB or 800
KB on systems that do not support the SuperDrive drive. If an
illegally formatted disk is encountered, the driver immediately
ejects the disk, prints an infonnational console message, and re­
turns EINVAL.

Opening in 0_ EXCL mode prevents the driver from complaining
about illegally formatted disks and also makes fixed-density dev­
ices behave in autodensity mode. While this behavior is imple­
mented to allow reformatting, it may be deliberately exploited to
extract data from an improperly formatted disk.

Simultaneous access to a drive is limited to similar modes. This is
enforced by only allowing users access to the drive through the
same device file. This prevents incompatible combinations of
density, wait-for-insert, and eject-on-close options.

The 720 KB and 1440 KB formats are not interleaved. As a result,
reading or writing in small block sizes can be quite slow.

February, 1990
RevisionC

forwarder(7) forwarder(7)

NAME
forwarder - forwarder device driver

DESCRIPTION
The forwarder is a specalized streams device driver written so as
to be able to run on a wide range of front end processors (FEP).

The PEP generally has a CPU, a memory, I/O circuitry devices,
and a means of communicating with the host Macintosh® II via
the NuBus™. (Modules are normally downloaded onto the PEP,
allowing for offtoading of the host processor.)

The forw~der software is actually duplicated; identical copies are
kept in the kernel on the host and in the minioperating system
found on the PEP. The two copies work together (as a matched
pair) to pass messages and data across the NuB us. From the ker­
nel, the forwarder looks like a stream driver; from the actual
stream driver (or modules), it looks like a stream head.

The forwarder software knows that there is a processing or space
separation (the NuBus) between the operating system and the re­
mote modules and streams driver. It is the only module that needs
to know about this division of powers; it hides this fact from the
other layers.

Because the NuBus exists, however, the implementor must be
aware of some stream restrictions. Any operation that uses the
forwarder must pass through the forwarder's queue processing.
For example,

q->~next->~next

would be incorrect because it is trying to access the queue beyond
the forwarder, and that is impossible. Careful thought and an
understanding of the forwarder's task should help prevent such er­
rors.

When it is next to a forwarder, the stream head behaves different­
ly when it receives an I PUSH ioctl. It first checks the module
ID number downstream. If the ID number is ~ FORWARD ERMIN
but ~ FORWARDERMAX, it sends an I PUSH via an M IOCTL
message. The forwarder passes the request to its twin on the
board, which tries to open the indicated module. The forwarder
then responds with an "acknowledge" if the open was complet­
ed. If the open was not completed successfully, a "negative ack­
now ledge" is returned. If the module is not found on the board, a
message is returned to that effect and the stream head continues

February, 1990 1
Revision C

forwarder(7) forwarder(7)

2

the push as if the forwarder were not there. The process is the
same for popping, except that there is no "not found" case.

Control of the forwarder is done via stream I STR ioctls. The
following stream I STR ioctls, defined in <f;-d. h>, are avail-
able. -

I FWD LOOKUP - -

I FWD RESET - -

I FWD DOWNLD

I FWD UPLD

Returns a table of the installed applica­
tion strings and places it in the location
pointed to by arg->ic_dp. An
I FWD LOOKUP call returns a table into
a-;g->Ic dp, where the line entries are
of type st-ruct fwd entry, found in
< fwd. h>. The lengiii of the table is
found in arg->ic len but is always
less than the stream-maximum of 1024
Kbytes.

Resets the board into a state ready for
downloading. This ioctl must be used
when the system first comes up, or when
an FEP panic occurs. An
I FWD RE SET call also disables any
application currently talking to the board
if EIO errors are detected for that appli­
cation. Note that with many FEPs, the
software cannot issue a reset to the
board. In this case, if the forwarder has
lost communication with its twin,
I FWD RE SET will have no effect, and
you rebOot the system to reset the for­
warder.

Causes the binary data contained in
fwd record. data to be downloaded
to the FEP starting at FEP memory loca­
tion fwd record. begin. The struc­
ture fwd record is defined in
<fwd.h>.

Causes the binary data to be uploaded
from the FEP memory into the data field
fwd record. data. The value in
fwd-record.ld length is the
number of bytes to be uploaded from the

February, 1990
RevisionC

forwarder(7) forwarder(7)

PEP. The structure fwd record is
defined in <fwd. h>. -

I FWD START Instructs the loader to transfer execution
to the address contained in
fwd entry. start. The name field is
placed in the forwarder's application
table.

EXAMPLES
int dev_fd;
struct strioctl i_str;

if «dev_fd = open (dev_file, O_NDELAY» < 0)
HANDLE_ERROR () ;

FILES

i_str.ic_cmd = I_FWD_DOWNLD;
i_str.ic_timout = 4;
i_str.ic_len = fwd_record.begin;
i_str.ic_dp = fwd_record;

if (ioctl(dev_fd, I_STR, &i_str) < 0)
HANDLE_ERROR();

/dev/fwdicpll
/etc/startup.d/fwdicp.d/at load
/etc/startup.d/fwdicp.d/tt=load

SEE ALSO
fwd lkup(1M), fwdload(IM).
AT&T UNIX System V STREAMS Programming Guide.

February, 1990
Revision C

3

gd(7) gd(7)

NAME
gd - generic disk interface

DESCRIPTION

1

The gd device driver provides a generic interface to disk devices.
A variety of devices are supported, and support for new hardware
may be added via autoconfiguration utilities. Consult the specific
hardware manual for add-on devices to see if they use the generic
disk interface.

For SCSI devices, the driver makes a distinction between disks
that support the SCSI common command set and those that don't.
The Apple® document SCSI Command Protocol 062-2075 defines
characteristics of the common command set. Certain features,
such as changing the reporting of soft errors, may not be support­
ed by hardware that does not implement the common command
set. The SCSI driver depends on the controller's ability to save
configuration information when the drive is turned off. Hardware
that does not save this information requires additional device­
specific software. The document Building AIUX Device Drivers
supplies technical information on extending the generic disk
driver.

Device Naming
A device controller corresponds to an A/UX® major device
number. For SCSI devices, a controller corresponds to a SCSI ID.
For NuBus™ based hardware, the disk controller is a single card.
Each controller may have up to eight drives associated with it.
For most devices, each drive would be a separate spindle with its
own set of platters. For SCSI devices, each drive is a SCSI logical
unit. For many SCSI devices with integral controllers, only one
drive is possible.

A drive is further divided into slices (or partitions). A slice is a
group of blocks used for a single purpose on a single drive. Most
often, a slice corresponds to a file system. Slice 1 on the disk with
the root file system is assumed to be a swap area at boot time.
Slice 30 is assumed to contain a Macintosh® file system.

In the / dev / ds k and / dev / rds k directories, devices are
named according to their controller, disk, and slice number.
/dev /dsk/cOdOsO would be SCSI ID 0, the first drive, and the
first paariJ.tion. I dev / ds k / c 9dO s 0 might be assigned io NuBus
slot nine. However, the low-level operating-system drivers do not
access devices by name; instead, they use a pair of numbers called

February, 1990
Revision C

gd(7) gd(7)

the major and minor device number. A disk controller is assigned
a major number by either the autoconfiguration process or by the
system designers. For SCSI disks, the major numbers from 24
through 31 are reserved for SCSI disk-device IDs 0 through 7.
However, these assignments are subject to change in later releases
of the operating system.

A minor number is calculated from the drive and the slice number.

minor = drive * 32 + slice

There are a maximum of 256 minor numbers for each major
number. There may be as many as eight drives per controller and
32 slices per drive.

Data Structures on Disk
The first block of the physical disk (block 0) is reserved by the
Macintosh Operating System. Block 1 of a disk used by NUX
(each physical block is always 512 bytes) contains one or more
disk partition map entries. This data structure defined in dpme(4)
assigns areas of the disk to the various available operating sys­
tems. NUX maintains specific operating information that further
describes each partition. This data structure resides in the
dpme boot args field of dpme. It is defined by the NUX
bzb(4) data structure. Information in bzb is used by au­
torecovery(8), the kernel, and other utilities to further define
the use of a partition.

An NUX disk partition provides three methods of compensation
for flawed or bad sectors on the disk. In most cases, disk
hardware or firmware remaps the bad sector without further in­
volvement by the operating system. If the disk hardware is
deficient, however, A/UX maintains a pool of spare sectors at the
end of the data area of the partition. The data structures defining
these spares are described in al tblk(4). If neither of these
methods is available, the autorecovery program may be used
to assign the bad sector to an unused inode. When this alternative
is used, a bad sector does not cause mischief on a mounted file
system, but the bad sector continues to be present when accessed
by other methods, such as an image copy via dd(1).

February, 1990
Revision C

2

gd(7) gd(7)

3

Partition Mapping
NUX disk partitioning allows slices of a disk to be allocated to
operating systems, users, or applications. A partition is a group of
disk blocks that are assigned a name and a type. The utility
dp{l M) is one way partitions may be created and manipulated.
Although any number of partitions may reside on a drive, the
number of concurrently available partitions is limited to 32. A set
of device control codes have been developed to allow partitions to
be selectively attached to the minor number of a given drive and
then detached when their usefulness is ended.

To allow the system to be booted, three partitions are normally as­
signed (or associated) by default. When slice 0 is first accessed.
the first partition which has the type field set to
Apple UNIX SVR2, which has the root file system bit set in the
block Oblock data structure. and whose autorecovery(8) clus­
ter number matches the autorecovery cluster number request­
ed by the NUX Startup Shell booter (or matches the default clus­
ter number of 0) is associated.

When slice 1 is first accessed, a partition is associated that
matches the NUX type name, includes the swap file-system type,
and matches the autorecovery cluster number. When slice 2
is opened as a usr file system, the first partition that matches the
NUX type name, includes the identifying bit of a usr file system,
and matches the autorecovery cluster number is associated.
Any of these default file-system assignments may be overridden
by explicitly setting a partition name for the partition. The parti­
tioning should not be reset on an active file system.

Slice 31 is always assigned to the entire physical drive. Slice 31
cannot be reassigned to another partition.

If the partition-map information is missing from the beginning of
the disk, the driver provides the following default mapping:

Partition 0 A partition that starts at block 204. Length is
the entire disk minus the size of partition 1.
This partition is usually used for a Root&Usr
file system.

Partition 1 One quarter of the disk or up to 10 megabytes,
whichever is less. This partition is normally
used for swap.

February, 1990
RevisionC

gd(7) gd(7)

Partition 31 Entire disk.

Only a subset of the following ioctls are allowed on these default
partitions and they are the following: GO_PARTSIZE,
GO UNSETPNAME, UIOCEXTE, UIOCNEXTE, UIOCFORMAT,
GO =:SOFTERR, and GO_SPARE.

IOCTLS
The driver accepts the following ioctls (the symbol definitions are
located in /usr/include/sys/ioctl.h or
/usr/include/sys/ssioctl. h):

ioctl (fd, GO ALTBLK, boo/)
The alternate block mechanism sets aside a portion of each
partition for an alternate block map area. When the boolean
value used as the third argument to this function is TRUE, al­
ternate block mapping occurs, and accesses are limited to the
logical data area of the partition. When the third argument is
FALSE, alternate block mapping is disabled, and reads and
writes are allowed throughout the partition. This ioctl
may only be performed by the superuser, or on a file descrip­
tor that is open for writing.

ioctl (fd, GO GBZBTMAOE, 0)
ioctl (fd, GO - GBZBTMOUNT, 0)
ioctl (fd, GO-GBZBTUMOUNT, 0)

These ioctls return the value of the time field stored in the
block 0 block of the partition. The times correspond to the
time the file system was made, the last time the file system
was mounted, and the last time the file system was unmount­
ed. The ioctl returns type time_t (defined in
/usr / include/types. h).

ioctl (fd, GO GETABM, addr)
This ioctlretums a description of the alternate block map
for the partition. The abm data structure (defined in
/usr / include/ apple/ abm. h) is comprised of:
struct abm {

int abm_size; /* size of map (bytes) */
int abm ents; /* number used (bytes) */
daddr_t abm=start; /* start of map (blk num) */

} ;

If alternate block mapping is not applied to the partition, the
system call errno is set to ENXIO.

February, 1990
RevisionC

4

gd(7) gd(7)

5

ioctl (fd, GO GETMAP, abmi)
This ioctl-returns alternate block information for the parti­
tion. The return of data is conb'olled by a pointer to the
abmi data structure passed as the third argument to the func­
tion. The abmi data structure is defined in
/usr/include/apple/abm.h.
struct abmi {

caddr t
int

} ;

abmi buf;
abmi=nbytes;

/* read buffer */
/* read count */

abmi _ buf is the location to place the alternate block map
information. abmi nbytes is the number of by~s to read.
The size of the alternate block map may be determined by the
ioctl GO GETABM.

ioctl (fd, GO GETPNAME, dpident)
ioctl (fd, GO:=SETPNAME, dpident)

struct dpident {
char dpiname[32]; /* name of partition */
char dpitype[32]; /* type of partition */

} ;

These ioctls map named partitions (named by dpident) to
A/UX devices (fd). The notion of partition mapping is dis­
cussed earlier. The name and type of a partition are character
strings. A typical name would be parti tionO o. The type
name for NUX file systems is defined as
Apple UNIX SVR2. By specification, the names need not
be null termiilated if they are OPISTRLEN long (see
dpme(4) for further information). The ioctl to get the
name copies the current partition information corresponding
to the file descriptor into the user's buffer. errno is set to
ENXIO if there is no partition assigned or if there are no
disk-partition-map entries for the disk. The ioctl to set the
name searches the disk for the first partition that matches dpi­
dent, and assigns it to the major and minor device number
corresponding to the file descriptor. The dpident structure
is defined in /usr/include/apple/dpme. h.

The ioctl GO SETPNAME may only be performed by the su­
peruser, or on a file descriptor that is open for ,writing.

ioctl (jd, GO MKBAO, biocknum)
The block number given as the third argument (blocknum) to
the call is entered in the software-maintained alternate block

February, 1990
RevisionC

gd(7) gd(7)

map for the partition. The block numbers are always relative
to the start of the partition. An alternate block map must be
created by application-formatting software before the block
is added. This ioctl may only be performed by the su­
peruser, or on a file descriptor that is open for writing.

ioctl ifd, GD SBZBTMADE, time)
ioctl ifd, GD-SBZBTMOUNT, time)
ioctl ifd, GD - SBZBTUMOUNT, time)

These ioctls set time fields stored in the block 0 block for
the partition to the third argument (time) of the function.
These ioctls may only be performed by the superuser, or on a
file descriptor that is open for writing. The parameter time is
type time_to

ioctl ifd, GD PARTSIZE, 0)
The return value of the function is the size of the partition.
This ioctl returns a long integer that represents the
partition's logical size in blocks.

ioctl ifd, GD SHUTDOWN, arg)
Special shutdown processing is performed. The argument is
normally one of these values:
GO_SHUT_SHIP 1 1* Shutdown and ready for shipping*/
GO SHUT CLOSE .2 /* Internal driver information*/
GO=SHUT=REINIT 3 /* Reinitialize the driver*/

The first two values are implemented by device-specific
software and mayor may not have an effect on any given
device. The last value causes drive data structures to be rein­
itialized and is used by utility software that updates disk­
partition information.

ioctl ifd, GD SOFTERR, bool)
If the third argument to this function is a Boolean value of
TRUE, soft errors on the disk return as hard errors to applica­
tions. In general, this means that an error that could be
corrected in hardware is not corrected and remains an error.
For SCSI disks, this ioctl is only defined for devices that
adhere to the common command set. Consult the
manufacturer's documentation for non-SCSI disks. This
ioctl is intended for Apple diagnostics and should not nor­
mally be used. The ioctl may only be used on a file
descriptor corresponding to partition 31 of the disk. It may
only be used by the superuser, or if the file descriptor is open

February, 1990
Revision C

6

gd(7) gd(7)

7

for writing.

ioctl (fd, GD SPARE, blocknum)
This ioctl causes hardware-specific bad blocking of the
block number given as the third argument (blocknum) to the
function. The block number is always relative to the start of
a partition. This ioctl call may only be used by the su­
peruser, or if the file descriptor is open for writing.

ioctl (fd, GD UNSETPNAME, 0)
The partition name, if any, assigned to the minor device
number is removed. If the minor number is assigned a parti­
tion by default, the partition name assignment is recalculated
on next access. Otherwise, an error (ENXIO) is returned on
next access. This function may only be invoked by the su­
peruser, or if the file descriptor is open for writing.

ioctl (fd, UIOCEXTE, 0)
This ioctl activates error printing on the system console.
The file descriptor may correspond to any character device
file associated with the desired controller. This ioctl may
only be performed by the superuser, or on a file descriptor
that is open for writing.

ioctl (fd, UIOCFORMAT, disk/ormat)
This ioctl formats the disk. The placeholder fd should be
an open file descriptor of the character device (that is,
/ dev / rdsk/ c?d? s ?). The third parameter to the ioctl
function call contains the address of a diskformat struc­
ture (defined in /usr / include/ sys/ diskformat. h).
The d secsize field of this structure may be used to speci­
fy 512-=-byte or 532-byte sector size for formatting. The 532-
byte sector size will not be supported in future versions of the
driver and should not be used. The other fields of the disk­
format structure are ignored. The ioctl may only be ap­
plied to partition 31 of a disk. The ioctl may only be used
by the superuser, or if the file descriptor is open for writing.

ioctl (fd, UIOCNEXTE, 0)
This ioctl deactivates error printing. The file descriptor
may correspond to any character device file associated with
the desired controller. When deactivated, device errors con­
tinue to be logged by errdemon(lM) but do not disturb t.lte
display on the console. This ioctl may only be performed

February, 1990
RevisionC

gd(7) gd(7)

by the superuser, or on a file descriptor that is open for writ­
ing.

ERRORS
The following error values may be returned:

[ENXIO] The device or partition could not be found.

[EACCES]

[EINVAL]

[EBUSY]

[EEXIST]

[EIO]

[ENOSPC]

FILES

The requested ioctl is only permitted by
the superuser, or on a file open for writing.

An ioctl to perform alternate block or
partition manipulation was performed on a
disk lacking appropriate disk partition map
entries.

An attempt was made to set the partition
name of a minor device that is already in
use.

An attempt was made to set the partition
name of a partition already assigned to
another minor device.

An I/O error has occurred.

There is no space in the software alternate
block map.

/dev/dsk/c?d[O-7]s*
/dev/rdsk/c?d[O-7]s*
/usr/include/sys/gdisk.h
/usr/include/sys/ioctl.h
/usr/include/sys/ssioctl.h
/usr/include/apple/abm.h

SEE ALSO
exterr(l), badblk(IM), diskformat(IM), dp(IM),
mkfs(IM), mknod(IM), pname(1M), ioctl(2),
getptabent(3), altblk(4), bzb(4), dpme(4), ptab(4), au­
torecovery(8), boot(8), StartupShell(8).

February, 1990
Revision C

8

kmem(7)

See mem(7)

1

kmem(7)

February, 1990
RevisionC

mem(7) mem(7)

NAME
mem, kmem - an interface for access to core memory

DESCRIPTION
mem is a special file that is an image of the core memory of the
computer. You can use it, for example, to examine and even
patch the system.

Byte addresses in mem are interpreted as memory addresses.
References to non-existent locations return errors.

Examining and patching device registers is likely to lead to unex­
pected results when there are read-only or write-only bits.

The file kmem is the same as mem, except that it accesses kernel
virtual memory rather than physical memory.

FILES
/dev/mem
/dev/kmem

February, 1990
RevisionC

1

mouse(7) mouse(7)

NAME
mouse - mouse input device driver

DESCRIPTION
The mouse driver provides simple access to the mouse device.
This driver allows one to open the mouse device, read the mouse
position and sense the mouse button state. All I/O transactions
complete immediately, whether succeeding or not

Opens of / dev /mouse will always succeed as long as no other
user is using the mouse (see console(7)) and the mouse is con­
nected to the system. Reads from the mouse device always return
4 bytes. The first two are a 16 bit signed absolute mouse horizon­
tal position. The next two bytes give the vertical position in a
similar manner. Positioning is relative to (0, 0) when the NUX
system was started.

Writes to the mouse device always fail. The mouse supports one
ioctl, MOUSE BUTTON, which takes as a parameter the address of
a character into which it returns the current state of the mouse' s
button. The symbol for this ioctl is located in
/usr/include/sys/mouse.h.

FILES
/dev/mouse
/usr/include/sys/mouse.h

SEE ALSO
console(7).

1 February, 1990
RevisionC

mtio(7) rntio(7)

NAME
mt i 0 - interface conventions for magnetic tape devices

DESCRIPTION
The rnt i 0 library allows applications to access tape devices using
a standard interface.

While the general read, write, and seek operations are part of the
standard I/O library, additional library resources are required to
add support for tape devices. The rnt i 0 library helps provide a
fairly device-independent way to perform additional operations,
such as rewind, that are common to tape drives, but not common
to other types of devices.

There are several system -dependent parameters that this generic
device interface uses. The most important is a standard I/O block
size, BLKDEV IOSIZE, which is defined in <sys/pararn. h>.
For NUX, thiS value is 1024. The commands that typically are
used in conjunction with a tape drive, such as tar(1), ultimately
generate requests to read and write 1024-byte blocks when the
tape devices are specified for either input or output. However, a
peculiarity of the Apple SC 40 Tape Backup is that it can only
read and write in blocks of 8192 bytes, requiring a specially for­
mulated user command line (see tc(7) and tcb(l)).

The rntio library moderates device I/O when output is sent to or
obtained from the device files in / dev / rrnt.

IOCTLS
When manipulating the tape cartridge device more directly
through your own programs, or through programs such as rnt(l),
tape-specific operations are supported through mtio ioctls. With
a few exceptions, these generic operations are shared by all tape
drives. One exception is the "format" ioctl (MTFORMAT), which
is available for the Apple SC 40 Tape Backup only; in general,
this is not a function of reel tape drives, such as 9-track tape
drives. Other exceptions that apply to the tape cartridge unit are
described in tc(7). The following is a list of mtio ioctls, and
their associated subcommands. For complete details about the
data structures, see <sys/rntio. h>.

ioctl ifd, MTIOCGET, *mtget)
This tape ioctl causes. the tape unit to return the status of the
tape drive, returning values in mtget.

February, 1990
RevisionC

1

mtio(7) mtio(7)

ioctl (fd, MTIOCTOP, *mtop)
This tape ioctI causes the tape unit to peform the subcom­
mand selected by the current values stored in the structure
mtop.

The subcommands for MTI OCTOP include:

MTWEOF write an end-of-file record

MTFSF forward space file

MTBSF backward space file

MTFSR forward space record

MTBSR backward space record

MTREW rewind

MTOFFL rewind and put the drive offline

MTNOP no operation, sets status only

FILES
/usr/lib/sys/ioctl.h
/usr/lib/sys/mtio.h
/dev/rmt/*

SEE ALSO
mt(I), tar(I), tcb(I), tp(I), tc(7).

2 February, 1990
Revision C

null(7) null(7)

NAME
null- the null device file

DESCRIPTION
Data written on the null device file, / dev / null, are discarded.

Reads from / dev /null always return 0 bytes.

FILES
/dev/null

February, 1990
Revision C

1

nvram(7) nvram(7)

NAME
nvram - nonvolatile memory/time of day clock interface

DESCRIPTION
The device / dev /nvram provides access to the real time clock
chip on the Macintosh II system board. This chip contains 256
bytes of nonvolatile memory (memory that retains its contents
when the system's power is turned off). It also contains a time of
day clock.

The special device / dev / nvram can be read by anyone. It re­
turns up to 256 bytes. The bytes are the contents of the nonvola­
tile RAM. In order to write to / dev /nvram, you must be the su­
peruser (root).

If the device is already open, an attempt to open it will return the
error EBUSY. This is to ensure that a process can perform read­
modify-write operations on the device. If an open fails with
EBUSY, the process should wait a while and then try again. After
an open succeeds, the device should be kept open only as long as
is necessary.

WARNINGS
Care should be taken in writing this device. Since the contents of
the nonvolatile RAM are defined by Apple and used by many
parts of both A/UX and the Macintosh operating system, in­
discriminate writing could cause your system to malfunction.
Usually you should use the utilities provided to manipulate the
nvram contents.

FILES
/dev/nvram
/usr/include/sys/nvram.h

SEE ALSO
date(1), stime(2), time(2).

1 February, 1990
Revision C

pty(7) pty(7)

NAME
pt Y - pseudo terminal driver

DESCRIPTION
The pt y driver provides support for a device-pair termed a pseu­
do terminal. A pseudo terminal is a pair of character devices, a
master device and a slave device. The slave device provides
processes an interface identical to that described in termio(7).
However, whereas all other devices which provide the interface
described in t e rmi 0(7) have a hardware device of some sort
behind them, the slave device has, instead, another process mani­
pulating it through the master half of the pseudo terminal. That is,
anything written on the master device is given to the slave device
as input and anything written on the slave device is presented as
input on the master device.

The following ioctl calls apply only to pseudo terminals:

TIOCPKT

February, 1990
Revision C

Enable/disable "packet" mode. Packet
mode is enabled by specifying (by reference)
a nonzero parameter and disabled by speci­
fying (by reference) a zero parameter. When
applied to the master side of a pseudo termi­
nal, each subsequent read from the termi­
nal will return data written on the slave part
of the pseudo terminal preceded by a zero
byte (symbolically defined as
TIOCPKT DATA), or a single byte
reflecting control status information. In the
latter case, the byte is an inclusive-or of zero
or more of the bits:

TIOCPKT FLUSHREAD
whenever the read queue for the termi­
nal is flushed.

TIOCPKT FLUSHWRITE
whenever the write queue for the termi­
nal is flushed.

TIOCPKT STOP
whenever output to the terminal is
stopped as with (CONTROL-S).

TIOCPKT START
whenever output to the terminal is res-

1

pty(7)

~ES

pty(7)

tarted.

TIOCPKT DOS TOP
whenever t . stope is CONfROL-S and
t_starte is CONfROL-Q.

TIOCPKT NOS TOP
whenever the start and stop characters
are not CONfROL-S/CONfROL-Q.

This mode is used by rlogin(lN) and
rlogind(IM) to implement a remote­
echoed, locally CONfROL-S/CONfROL-Q
flow-controlled remote login with proper
back-flushing of output; it can be used by
other similar programs.

/dev/pty[p-r] [O-9a-f]
/dev/tty[p-r] [O-9a-f]

BUGS
It is not possible to send an EOT.

2 February, 1990
RevisionC

serial(7) serial(7)

NAME
serial- the on-board serial ports

DESCRIPTION
I dev It tyO is the serial port connected to the DIN connector on
the rear of the chassis with the modem icon above it; it is linked to
(is the same as) the name I dev I modem. I dev Itt y 1 is the
serial port connected to the DIN connector on the rear of the
chassis with the printer icon above it; it is linked to (is the same
as) the name I dev Iprinter.

These ports support all the standard A/UX ioctls from ter­
mio(7). They also support the following hardware specific exten­
sions. The modes set by these ioctls (or the corresponding
st ty(l) options) persist after a device is closed and reopened.
The mnemonic definitions are in
lusr/include/sys/ioctl.h.

UIOCNOMODEM No modem control, the input line HSKi
is ignored. The output line HSKo is as­
serted whenever the line is opened.
The following s t t y(1) command can
be used to put a port (/dev/ttyO in
this example) into such a mode:

UIOCMODEM

February,1990
RevisionC

stty -modem < /dev/ttyO

modem control, the output line HSKo
is asserted whenever a process is at­
tempting to open the device or while
the device is open, as an output this
performs the RS232 function Data Ter­
minal Ready (DTR). When a port is
closed this line is negated (if the
HUPCL flag from termio(7) is set)
which causes a modem to hang up a
call). Upon opening, if HSKi is not as­
serted, then an open will not complete
(a process will be suspended until the
open does complete) until it is asserted.
Processes that use the 0 NDELAY (see
open(2)) flag when opening such a
port are not suspended, but instead
complete their opening immediately. If
HSKi is negated while a port is open,

1

serial(7)

UIOCDTRFLOW

2

serial(7)

the signal SIGHUP will be generated to
processes with the port as their control­
ling terminal (usually resulting in the
death of the processes and the subse­
quent closing of the port). In this
mode, the HSKi input functions as the
RS232 function Data Carrier Detect
(DCD). The following stty(1) com­
mand can be used to put a port into
such a mode:

stty modem < /dev/ttyO

To tum this option off, stty(1) needs
to first open the port; and because it
can't open the port until the HSKi
(DCD) line is asserted, the following
form of the s t t y(1) should be used to
tum off this option:

stty -n /dev/ttyO -modem

DTR flow control. This mode is used
to communicate with printers such as
the Apple Image Writer II. The HSKo
output performs in the same manner as
above. The HSKi input is used to en­
able or disable output by a a device
(such as a printer) that wishes to flow
control it When HSKi is asserted
characters may be output, when it is
negated output will stop. Note that
when an A/UX device is closed, the
process that is closing it will be
suspended until all waiting characters
have been transmitted, such a process
will wait until flow control is asserted.
Either of the following stty(1) com­
mands can be used to tum on DTR flow
control:

stty dtrflow < /dev/ttyO
stty hxctl < /dev/ttyO

February, 1990
RevisionC

serial(7)

UIOCTTSTAT

serial(7)

This call returns the current state of the
three above options, refer to te r-
mi 0(7) for more documentation.

Note: Since this interface does
not support the RS232 "Clear
To Send" and "Request To
Send" (CTS/RTS), the ioctIs
UIOCFLOW and UIOCNOFLOW
are not supported. In
UIOCDTRFLOW mode, the
HSKi input acts very similarly
to CTS and could be used with
some devices that require this
signal.

The port pins have the following functions, shown with the cpn­
nections required to use them for RS232:

FILES

Mini-DIN
Pin #

1
2
3
4
5
6
7
8

/dev/ttyO
/dev/ttyl
/dev/modem

Function
HSKo
HSKi
TXD­
GND
RXD­
TXD+
GPi
RXD+

/dev/printer
/usr/include/sys/ioctl.h

SEE ALSO

RS232
DTR
DCD
TXD
GND
RXD
GND
NC
GND

stty(1), ioctl(2), open(2), termio(7).

February, 1990
RevisionC

Pin #
20

8
3
7
2
7

7

3

streams(7) streams(7)

NAME
streams - an interface for character I/O

DESCRIPTION

1

Streams is a mechanism that is used in the UNIX kernel for some
device drivers. These drivers are usually for communications or
tty type applications. To most programs, this interface is, with a
few exceptions, the same as that of traditional UNIX character
devices. When used with a streams line-discipline, this interface
is the same as that of normal UNIX terminals.

NUX supports the version of streams implemented under
UNIX V .2.1, which is a functional subset of that provided by later
UNIX implementations. It is upwardly compatible with such sys­
tems.

The main difference between streams and other character device
drivers is that the streams interface is message based. Commands
and data exchanged between devices, processes and line discip­
lines (streams modules) are sent in messages. A number of spe­
cial ioctl functions have been defined to send and receive these
messages.

A stream is built by opening a stream style device (the ability of a
device to ' 'stream" is defined by the writer of the device's
device-driver, either a device streams or it doesn't). When the
device is open it consists of the device and the "stream head," the
interface to the process that opened the device.

The device and the stream head can communicate by means of
messages across the full-duplex stream. Processes can communi­
cate with the stream head by means of system calls such as
read(2), wri te(2) and ioctl(2).

Using the I_PUSH, a stream module can be pushed (in a LIFO or
stacked manner) onto the stream. More than one stream module
can be pushed onto such a stream at a time. The module closest to
the stream head may be removed using the I _POP ioctl call.

Closing a stream causes the modules to be popped from the
stream, the device to be closed, and the stream dismantled.

Modules exist in the kernel and are referenced by name. There
are two stanit:lrd streams modules:

line A tty style line discipline. When pushed, it im­
plements all the functionality described by ter­
mio(7). Most terminal-style communications

February, 1990
RevisionC

streams(7)

shlr

streams(7)

lines use this module.

The shell layering module. shlr responds to
shell layering ioctls to implement shell layering
on stream based ttys. Normally shl(1) is the
only utility that uses this module.

The streams system implements a number of ioctlst all of the ioctls
described in termio(7) are provided for compatability. Some
devices and/or modules may not respond to these calls. In particu­
lar many of the line discipline related ioctls will either fail or be
ignored unless the module line has been pushed onto the stream.
In addition the following streams related ioctls are supported, they
are defined in the include file <sys/ stropts. h>.

I STR

February, 1990
RevisionC

ioctl(fd, I_STR, &strioctl)
struct strioctl strioctl;

This ioctl builds an ioctl packet and sends it
down the stream. It may be interpreted by any
module on the stream or by the device at the
end. The packet is returned with data and an in­
dication of success or failure. The data structure
strioctl is used to describe the packet to be
sent. It has 4 fields:

ic cmd

ic timout

ic len

The command to be sent

How long to wait for the ioctl
to succeed before failing (in
seconds), values 0 and -1 have
special meaningst 0 means
wait for the system default
time, -1 means wait forever.

Points to the address of the
data to be sent down the
stream, or the address at
which data returned from the
stream is to be stored.

Is the length of the data to be
sentt in by test or the size of
the buffer into which returned
data is to be stored.

2

streams(7)

I NREAD

I PUSH

I POP

I LOOK

3

streams(7)

Errors:
EFAULT if ic dp references an invalid ad­
dress. Any other device/module specific error
message.

n=ioctl(fd, I_NREAD, &first);

I NREAD returns the number of messages in
the queue at the streams head as its result. It
also returns the number of bytes in the first mes­
sage in the queue to the address referenced by
its argument.

Errors:
EFAULT if the argument references an invalid
address.

ioctl(fd, I_PUSH, module)
char *module;

This ioctl pushes the streams module named by
the null-tenninated string module onto an open
stream.

Errors:
EFAULT if the module name references an in­
valid address. EINVAL if the module name
does not describe an existing streams module in
the NUX kernel.
Any other error the streams module might return
if it decides not to allow the push.

ioctl(fd, I_POP, 0)

The ioctl removes the streams module closest to
the process on the stream.

Errors:
EINVAL if no such module exists

ioctl(fd, I_LOOK, buff)
char buff[F~ll~ru~ESZ+l];

This returns the name of the streams module
closest to the process on a stream.

February, 1990
RevisionC

streams(7)

I FLUSH

I SRDOPT

February, 1990
Revision C

streams(7)

Errors:
EFAULT if the buffer for the name is located at
an invalid address.
EINVAL if there are no modules pushed onto
the stream.

ioctl(fd, I_FLUSH, flushtype)

This generates a message that is sent down the
queue to flush messages waiting at modules
down the stream. The parameter can be one of
three allowed values:

FLUSHR

FLUSHW

FLUSHRW

flush messages coming down
the stream towards the process

flush messages moving up the
stream away from the process

flush all messages in the
stream

Errors:
EINVAL the parameter is not
one of the above values
EAGAIN insufficient resources
are available to send the mes­
sage up the queue and it
should be retried at a later
time.

ioctl(fd, I_SRDOPT, srdtype)

This ioctl changes the manner in which the
stream head treats incoming messages as they
are passed to a process as part of a read(2) sys­
tem call. The parameter can take one of three
possible values:

RNORM in stream mode - messages are
read from the stream and mes­
sage boundaries are ignored
(except for 0 length messages
which are always returned as
separate messages and are

4

streams(7)

I GRDOPT

I FIND

5

RMSGN

RMSGD

streams(7)

nonnally treated as end of file
markers)

a read tenninates at either the
end of the message or when
the read buffer is full. Any
message data remaining is
available from future reads.

a read tenninates when either
the end of the message is
found or the read buffer is full.
Any unread data is discarded.

When a stream is first opened,
it has the default operating
mode of RNORM. It is also
possible for upstream modules
to change this.

Errors:
EINVAL the parameter is not
one of the above values

ioctl(fd, I_GRDOPT, &Opt)
int opt;

This call returns the current read option (as
specified above under I _ SRDOpn.

Errors:
EFAULT if the argument is a valid address

find = ioctl(fd, I_FIND, buff)
char buff[FMNAMESZ+l];

This call returns 1 if a module of the name given
in the null-terminated string passed in the argu­
ment is present in the stream, or 0 if the module
does not exist.

EINVAL if the name is not the name of a
module in the kernel.
EFAULT if the address of the name passed as

February, 1990
RevisionC

streams(7)

I MNAME

Terminal Lines

streams(7)

the argument is not valid.

ioetl(fd, I_MNAME, &par)
union {
int depth;
ehar buff[FMNAMESZ+l];
} par;

This ioctl returns the name of the module or
driver at the depth on the stream specified by the
parameter. The stream head is at depth O. The
last module found on the stream will be the
driver.

Note: this ioctl is not necessarily provided on all
systems that provide a stream interface. It
should not be used if program portability is a
factor.

Errors:
EFAULT if the address of the parameter is in­
valid
EINVAL if the depth is less than 0 or references
a module past the driver at the end of the stream

When using a stream based terminal, it is usually necessary to
push a line discipline module onto the stream before use. In al­
most all cases this is done by jete/getty or /ete/init
when you log onto your system. When you are opening an unused
terminal line it may then be required. Pushing more than one line
discipline onto a stream should be avoided as the results are
undefined and will not be useful. Two methods are provided to
make pushing line disciplines easier. They both can be used on
non stream based character drivers without any undue effect and
they will avoid the multiple pushing of line disciplines if one is al­
ready pushed.

line push(3) is a library routine that is passed the file descrip­
tor of and open device (from open(2». It will push a line discip­
line onto the device if it is a streaming device and there is not one
pushed already.

February, 1990
Revision C

6

streams(7) streams(7)

/etc/line_sane(IM) is a utility that can be run from shell
scripts (such as those started from /etc/inittab(4». It takes
one parameter, an integer representing an open file descriptor on
which the line discipline is to be pushed. It behaves similarily to
line yush(3) above.

Further Functionality
The following extensions are provided to the streams system.
They are not necessarily provided with other streams implementa­
tions and should not be used if portability is important.

select(2) allows a process to wait for input from
more than one open device, socket or
stream

FIONBIO

FIONASYNC

FIONREAD

allows a process to make non blocking
reads to a stream (see termio(7)

sends a SIGIO signal to a process when
input is available from the queue (see
termio(7»

returns the number of characters avail­
able to be read from the stream head
(this is different from I NREAD
above) (see termio(7»

SEE ALSO

7

line sane(1M), close(2), ioctl(2), open(2), read(2),
select(2), wri te(2), line yush(3).
Building AIUX Device Drivers.

February, 1990
RevisionC

sxt(7) sxt(7)

NAME
sxt - pseudo-device driver

DESCRIPTION
sxt is a pseudo-device driver that interposes a discipline between
the standard tty line disciplines and a real device driver. The
standard disciplines manipulate virtual tty structures (channels)
declared by the sxt driver. sxt acts as a discipline manipulating
a real tty structure declared by a real device driver. The sxt
driver is used only by the shl(l) command.

Virtual ttys are named by inodes in the subdirectory / dev / sxt
and are allocated in groups of up to eight To allocate a group, a
program should exclusively open a file with a name of the form
/dev/sxt/??O (channel 0) and then execute a SXTIOCLINK
ioctl call to initiate the multiplexing.

Only one channel, the controlling channel, can receive input from
the keyboard at a time; others attempting to read will be blocked.

sxt supports two groups of ioctl(2) commands. The first
group contains the standard ioctl commands described in ter­
mio(7), with the following additions:

TIOCEXCL

TIOCNXCL

Set exclusive use mode: permit no furth­
er opens until the file is closed.

Reset exclusive use mode: permit further
opens.

The second group, which follows, are directives to sxt itself.
Some of these may only be executed on channel O.

SXTIOCLINK Allocate a channel group and multiplex
the virtual ttys onto the real tty. The ar­
gument is the number of channels to al­
locate. This command may only be exe­
cuted on channel O. Possible errors in­
clude

EINVAL The argument is out of range.

ENOTTY A real tty did not issue the
command.

ENXIO sxt did not configure linesw.

EBUSY Already issued an
SXTIOCLINK command for

February, 1990 1
RevisionC

sxt(7) sxt(7)

2

SXTIOCSWTCH

SXTIOCWF

SXTIOCUBLK

SXTIOCUBLK

SXTIOCSTAT

SXTIOCTRACE

SXTIOCNOTRACE

this real tty.

ENOMEM There is no system memory
available for allocating the
virtual tty structures.

EBADF Did not open channel 0 before
this call.

Set the controlling channel. Possible er­
rors include

EINVAL Gave an invalid channel
number.

EPERM Did not execute the command
from channel O.

Cause a channel to wait until it is the
controlling channel. This command re­
turns the error EINVAL if it is given an
invalid channel number.

Tum on the loblk control flag in the
virtual tty of the indicated channel.

Tum off the loblk control flag in the
virtual tty of the indicated channel. Re-
turns the error EINVAL if it is given an
invalid number or channel O.

Get the status (blocked on input or out­
put) of each channel and store the argu­
ment references in the sxtblock struc­
ture. Returns the error EFAULT if it
cannot write the structure.

Enable tracing. This command has no
effect if tracing is not configured.

Disable tracing. This command has no
effect if tracing is not configured.

If the device driver is a streams device driver (see streams(7»
then it will respond to all the sxt ioctls listed earlier, provided
they are made using the streams I S TR ioctl. To turn on shell
layering on a streams device, first pop the normal line discipline
off the stream, push the line discipline shlr onto the stream, and
then push the line discipline line back onto the stream. This

February, 1990
RevisionC

sxt(7) sxt(7)

open file descriptor will now become the controlling virtual tty.
To open a slave virtual tty. open / dev / shl and push a line dis­
cipline onto it (using line yush(3). for example). / dev / shl
is a clone device so a new virtual device will automatically be
opened exclusively for you (TIOCEXCL is not required or sup­
ported).

FILES
/ dev / sxt / ?? [0 -7] virtual tty devices
/ us r / incl ude / sys / sxt . h driver-specific definitions
/dev/shl

SEE ALSO
shl(1). stty(1), ioctl(2), open(2), lineyush(3),
streams(7), termio(7).

February, 1990
Revision C

3

tc(7) tc(7)

NAME
t c - Apple Tape Backup 40SC device driver

DESCRIPI10N

1

tc is a device driver that supports the Apple Tape Backup 40SC
using the generic tape driver interface described in mtio(7), with
certain exceptions. To be more compatible with 9-track tape un­
its, this driver approximates 9-track drive tapemarks through the
use of special tapemark records. Other exceptions are mentioned
where appropriate.

The Apple Tape Backup 40SC is connected to the system through
the SCSI device chain. To select the correct device, you must
reference the correct device file. The SCSI ID number of the tape
backup device should match the number after t c in the device
file. The device files for Apple tape backup devices in the form

/dev/rmt/tcx
/ dev / rmt/tcxn

where x is the SCSI ID number of the drive in the range 0 through
7. For example, /dev/rmt/tcO and /dev/rmt/tcOn both
select the device with a SCSI ID set to O. The device reference
with suffix n is called a reference to a no-rewinding tape device
because it reads or writes from the tape drive without rewinding
the tape afterwards. If you use the no-rewinding device, the tape
is positioned so that the next archive in a series of archives can be
accessed. (These device files are present only if the kernel has
been configured properly for the Apple Tape Backup 40SC.)

To configure the kernel, run the command

newconfig tc

to create a kernel with tape-cartridge support. Note that
newunix must first be run, to enable creation of device files.

The tape cartridge must be formatted in order to store data. Nomi­
nal capacity is 40 megabytes (MB). Usable capacity is closer to
38.5 MB (reduced because of formatting overhead).

One of the peculiarities of this tape device is that it only reads and
writes fixed 8 kilobyte (KB) blocks, streaming when possible.
Since the device always reads and writes 8 KB blocks, the driver
restricts raw I/O size to a multiple of 8 KB. Reading and writing
many 8 KB blocks at once minimizes user-process overhead and
maximizes streaming. It should be noted that positioning subcom­
mands always act on physical 8 KB blocks.

February, 1990
Revision C

tc(7) tc(7)

The tcb(l) program helps overcome the fixed-block-size problem
when it is used to read from the tape or when it is used just before
a write to the tape.

Each read or wri te call reads or writes the next record on the
tape. When writing, the record size returned is the same length as
the block size given. When reading, the record size returned is the
actual number of bytes read, which can be no greater than the
buffer size; if the record is too long, an error is indicated.

For the tc device driver, the ioctls and data structures associated
with the mtio(7) generic tape interface are supported, including
MTIOCGET and MTIOCTOP. The MTIOCGET ioctl returns the
driver's notion of current file and block number information in
mt fileno and mt blkno. The rot dsreg field contains the
logIcal block numbef where the last I/O operation occurred.
Though this generally matches mt blkno, they are both returned
for testing purposes. -

The mt _ erreg field always contains the current driver version.
The number is a short integer, which is expressed as x. mn (for ex­
ample, 3.24). The version is encoded as

(100 * x) + (10 *m) + n

For this example, the value would be decimal 324.

The mt resid field contains the number of usable blocks on the
currently loaded cartridge. If this field is 0, the cartridge is not
formatted.

FILES
/dev/rmt/tc [0-7]
/dev/rmt/tc[0-7]n

SEE ALSO

Rewind on close
No rewind on close

mt(1), tar(1), tcb(1), tp(l), mtio(7).

DIAGNOSTICS
If an unformatted cartridge is loaded and the device is opened for
read only, EINVAL is returned

BUGS
The tapemark format does not conform to any known standard be­
cause such standards are nonexistent. When end-of-file is encoun­
tered at a simulated tapemark, the tapemark record is transferred
to the user's buffer, even though the return from read(2)
(correctly) does not include the tapemark bytes. A O-byte count is

February,1990
Revision C

2

tc(7) tc(7)

3

returned when a tapemark is read, but another read fetches the first
record of the next tape file.

If the tape device remains in an error state, tc may have to be
closed to clear the error condition.

The mtio(7) subcommands MTNOP, MTCACHE, and MTNO­
CACHE are not supported.

Mter issuing the MTFORMA T ioctl, you must close and reopen the
device before it will allow any other subcommands.

For raw tape I/O accesses, seeks are ignored.

February, 1990
RevisionC

termio(7) termio(7)

NAME
termio - general terminal interface

DESCRIPTION
This section describes both a particular file and the terminal inter­
face.

The file / dev / tty is, in each process, the control terminal asso­
ciated with the process group of that process. Programs or shell
sequences use it to ensure that their messages appear on the termi­
nal, no matter how output is redirected. Also, programs that
demand an output filename will accept / dev / tty, so the termi­
nal being used is unimportant.

The asynchronous communications ports use the same general in­
terface, no matter what their hardware. This section discusses the
common features of this interface.

When a terminal file is opened, it normally makes the process wait
until it establishes a connection. Users' programs seldom open
these files; getty(IM) opens them and they become a user's
standard input, output, and error files. The first terminal file the
process-group leader opens, which is not already associated with a
process group, becomes the control terminal for that process
group. The control terminal plays a special role in handling quit
and interrupt signals, as discussed later. The control terminal is
inherited by a child process during a fork(2). A process breaks
this association by changing its process group (using
setpgrp(2)).

Tenninals associated with one of these files operate in full-duplex
mode. You may type at any time, even while the terminal is print­
ing. Characters you type are lost only when the system's charac­
ter input buffers are full, which is rare, or when you have accumu­
lated the maximum number of input characters that have not been
read by some program. Currently, this limit is 256 characters.
When you reach the input limit, all the saved characters are
thrown away without notice.

Normally, tenninal input is processed in units of lines. A line is
delimited by a newline (ASCII LF) character, an end-of-file
(ASCII EOn character, or an end-of-line character. This means
that a program cannot read input until you have typed an entire
line. Also, no matter how many characters a read(2) system call
requests, a maximum of one line is returned. It is not, however,
necessary to read a whole line at once; a read can request any

February, 1990
Revision C

1

termio(7) terrnio(7)

number of characters, even one, without losing information.

Erase and kill processing is normally done during input. By de­
fault, the character DELETE erases the last character typed, but it
does not erase beyond the beginning of the line. By default, the
character CONTROL-U deletes the entire input line, and optionally
outputs a newline character. Both these characters operate on a
key-stroke basis, independent of any backspacing or tabbing that
may have been done. You can escape both the erase and kill char­
acters by preceding them with the escape character (\). The user
can also change the erase and kill characters with st ty(l).

The following characters have special input functions.

INTR (Rubout or CONTROL-C) Interrupt signal to all
processes associated with the control terminal. Nor­
mally, it terminates each process, but you can arrange
to have it ignore the signal or to receive a trap to an
agreed-upon location; see signal(3).

SWTCH (CONTROL-Z or ASCII SUB) Used by the shell layer­
ing facility, shl, to change the current layer to the
control layer.

QUIT (CONTROL-\ or ASCII FS) Generates a quit signal. It
is identical to the interrupt signal except that, unless a
receiving process has made other arrangements, it will
also create a core image file (called core) in the
current working directory.

ERASE (DELETE) Erases the preceding character. It will not
erase beyond the start of a line, as delimited by a NL,
EOF, or EOL character.

KILL (CONTROL-U) Deletes the entire line, as delimited by a
NL, EOF, or EOL character.

EOF (CONTROL-D or ASCII EOT) Generates an end-of-file
from a terminal. This passes the characters waiting to
be read to the program, without waiting for a newline,
and discards the EOF. If no characters are waiting, (if
EOF occurred at the beginning of a line), 0 characters
are passed back; this is the standard end-of-file indica­
tion.

NL (ASCII LF) The normal line delimiter. It cannot be
changed or escaped.

2 February, 1990
RevisionC

termio(7) termio(7)

EOL (ASCII NUL) An additional line delimiter, like NL. It
is not normally used.

STOP (CONTROL-S or ASCII DC3) Temporarily suspends
output. It is useful for preventing output from disap­
pearing from CRT terminals before you have read it.
While output is suspended, STOP characters are ig­
nored and not read

START (CONTROL-Q or ASCII DCl) Resumes output
suspended by a STOP character. While output is not
suspended, START characters are ignored and not
read. The start/stop characters cannot be changed or
escaped.

Special character functions can be disabled by changing the value
in c_cc of the termio structure to' \0377' .

The user can change the character values for INTR, QUIT,
SWTCH, ERASE, KILL, EOF, and EOL using stty(1). You
can escape the ERASE, KILL, and EOF characters by preceding
them with a \ character, in which case no special function is gen­
erated.

When a data-set drops the carrier signal, a hangup signal is sent to
all processes that have this terminal as the control terminal. Un­
less you have made other arrangements, this signal terminates the
processes. If the hangup signal is ignored, subsequent reads return
with an end-of-file indication. Thus, programs that read a terminal
and test for end-of-file can terminate appropriately when hung up
on.

When one or more characters are written, they are transmitted to
the terminal as soon as previously-written characters have finished
typing. Input characters are echoed by putting them in the output
queue as they arrive. If a process produces characters more rapid­
ly than they can be typed, it will be suspended when its output
queue exceeds some limit When the queue has drained down to
some threshold, the program is resumed.

Several ioctl(2) system calls apply to terminal files. The pri­
mary calls use the following structure, defined in termio. h.
#define NCC 8
struct termio {

unsigned short
unsigned short
unsigned short

February, 1990
Revision C

c iflag;
c=oflag;
c_cflag;

/* input modes */
/* output modes */
/* control modes */

3

termio(7) termio(7)

4

unsigned short c_Iflag; /* local modes */
char c_Iine; /* line discipline */
unsigned char c_cc[NCC); /* control chars */

} ;

The special control characters are defined by the array c cc. The
relative positions and initial values for each function are as fol­
lows:

o
1
2
3
4
5

VINTR
VQUIT
VERASE
VKILL
VEOF
VEOL

6 reserved
7 SWTCH

AC
FS
DEL
AU
EOT
NUL

NUL

The c_iflag field describes the basic terminal input control.

I GNBRK 00000o 1 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
I GNP AR ()()()()()()4 Ignore characters with parity errors.
P ARMRK ()()()()() 1 0 Mark parity errors.
INPCK ()()()()()20 Enable input parity check.
IS TRI P 0000040 Strip character.
I NLCR ()()()() 100 Map NL to CR on input.
IGNCR ()()()()200 Ignore CR.
I CRNL 000040O Map CR to NL on input.
IUCLC 0001000 Map uppercase to lowercase on input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error
with all data zeros) is ignored, that is, not put in the input queue
and therefore not read by any process. Otherwise if BRKINT is
set, the break condition will generate an interrupt signal and flush
both the input and output queues. If neither I GNBRK nor
BRKINT is set, a break condition is read as a NUL (0), or if
PARMRK is set, as '377, '0, '0. If IGNPAR is set, characters with
other framing and parity errors are ignored.

If P ARMRK is set, a character with a framing or parity error that is
not ignored is read as the three-character sequence: 0377, 0, X,
where X is the data of the character received in error. To avoid
ambiguity in this case, if IS TRI P is not set, a valid character of

February, 1990
RevisionC

termio(7) termio(7)

0377 is read as 0377, 0377. If PARMRK is not set, a framing or
parity error that is not ignored is read as the character NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not
set, input parity checking is disabled. This allows output parity
generation without input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7-bits,
otherwise all 8-bits are processed.

If INLCR is set, a received NL character is translated into a RE­
TURN character. If I GNCR is set, a received RETURN character is
ignored (not read). Otherwise if ICRNL is set, a received RETURN
character is translated into a NL character.

If IUCLC is set, a received uppercase alphabetic character is
translated into the corresponding lowercase character.

If IXON is set, start/stop output control is enabled. A received
STOP character will suspend output and a received START char­
acter will restart output. All start/stop characters are ignored and
not read. If IXANY is set, any input character will restart output
which has been suspended.

If IXOFF is set, the system will transmit START/STOP characters
when the input queue is nearly empty/full.

The initial input control value is all-bits-clear.

The c _ oflag field specifies the system treatment of output.

OPOST 0000001 Postprocess output
OLCUC 0000002 Map lowercase to uppercase on output
ONLCR ()()()()()()4 Map NL to CR-NL on output
OCRNL 0000010 Map CR to NL on output.
ONOCR 0000020 No CR output at column O.
ONLRET ()()()()()40 NL performs CR function.
OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, otherwise NUL.
NLDLY 0000400 Select newline delays:
NLO 0
NLl 0000400
CRDLY 0003000 Select carriage-return delays:
CRO 0
CRl 0001000
CR2 0002000
CR3 0003000
TABDLY 0014000 Select horizontal-tab delays:

February, 1990 5
RevisionC

termio(7) termio(7)

6

TABO 0
TABl 0004000
TAB2 0010000
TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:
BSO 0
BSl 0020000
VTDLY 0040000 Select vertical-tab delays:
VTO 0
VTl 0040000
FFDLY 0100000 Select fonn feed delays:
FFO 0
FFl 0100000

If OPOST is set, output characters are postprocessed as indicated
by the remaining flags, otherwise characters are transmitted
without change.

If OLCUC is set, a lowercase alphabetic character is transmitted as
the corresponding uppercase character. This function is often
used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL
character pair. If OCRNL is set, the CR character is transmitted as
the NL character. If ONOCR is set, no CR character is transmitted
when at column 0 (first position). If ONLRET is set, the NL char­
acter is assumed to do the return function; the column pointer will
be set to 0 and the delays specified for CR will be used. Other­
wise the NL character is assumed to do just the line-feed function;
the column pointer will remain unchanged. The column pointer is
also set to 0 if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for
mechanical or other movement when certain characters are sent to
the terminal. In all cases a value of 0 indicates no delay. If
OFILL is set, fill characters will be transmitted for delay instead
of using a timed delay. This is useful for high baud terminals
which need only a minimal delay. If OFDEL is set, the fill charac­
ter is DEL, otherwise NUL.

If a form feed or vertical tab delay is specified, it lasts for about 2
seconds.

Newline delay lasts about 0.10 seconds. If ONLRET is set, the re­
turn delays are used instead of the newline delays. If OFILL is
set, two fill characters will be transmitted.

February, 1990
RevisionC

termio(7) termio(7)

Return delay type 1 is dependent on the current column position,
type 2 is about 0.10 seconds, and type 3 is about 0.15 seconds. If
OFILL is set, delay type 1 transmits two fill characters, and type
2, four fill characters.

Horizontal tab delay type 1 is dependent on the current column
position. Type 2 is about 0.10 seconds. Type 3 specifies that tabs
are to be expanded into spaces. If OFILL is set, two fill charac­
ters will be transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFI LL is set, one
fill character will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

The c cflag field describes the hardware control of the termi­
nal: -

CBAUD
BO
BSO
B7S
BllO
B134
B1SO
B200
B300
B600
B1200
B1800
B2400
B4800
B9600
B19200
B38400
EXTA
EXTB
CSIZE
CSS
CS6
CS7
CS8
CSTOPB
CREAD

February, 1990
RevisionC

0000017
0
0000001
0000002
0000003
0000004
0000005
0000006
0000007
()()()()() 1 0
()()()()() 11
()()()()() 12
()()()()() 13
()()()()() 14
()()()()() 15
()()()()() 16
()()()()() 17
()()()()() 16
0000017
000006O
0
0000020
0000040
000006O
0000100
0000200

Baud rate:
Hang up
50 baud
75 baud
110 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
19200 baud
38400 baud
External A
External B
Character size:
5 bits
6 bits
7 bits
8 bits
Send two stop bits, otherwise one.
Enable receiver.

7

terrnio(7) terrnio(7)

8

PARENB 000040O Parity enable.
PARODD 0001000 Odd parity, otherwise even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, otherwise dial-up.
LOBLK 0010000 Block layer output.

The CBAUD bits specify the baud rate. The zero baud, BO, is used
to hang up the connection. If BO is specified, the data-terminal­
ready signal will not be asserted. Normally, this will disconnect
the line. For any particular hardware, impossible speed changes
are ignored.

The CSIZE bits specify the character size in bits for both
transmission and reception. This size does not include the parity
bit, if any. If CSTOPB is set, two stop bits are used, otherwise one
stop bit. For example, at 110 baud, two stops bits are required.

If P ARENB is set, parity generation and detection is enabled and a
parity bit is added to each character. If parity is enabled, the
PARODD flag specifies odd parity if set, otherwise even parity is
used.

If CREAD is set, the receiver is enabled; otherwise no characters
will be received.

If HUPCL is set, the line will be disconnected when the last pro­
cess with an open line, closes it or terminates. That is, the data­
terminal-ready signal will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct connec­
tion with no modem control; otherwise modem control is assumed.

If LOBLK is set, the output of a job control layer will be blocked
when it is not the current layer; otherwise the output generated by
that layer will be multiplexed onto the current layer.

The initial hardware control value after open is B300, CS8,
CREAD, HUPCL.

The c Iflag field of the argument structure is used by the line
discipline to control terminal functions. The basic line discipline
(0) provides the following:

I S I G 00000o 1 Enable signals.
ICANON 0000002 Canonical input (erase and kill processing).
XCASE 0000004 Canonical upper !lower presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS.

February, 1990
RevisionC

termio(7) termio(7)

ECHOK ()()()()()40

ECHONL 0000100
NOFLSH 0000200

Echo NL after kill character.
EchoNL.
Disable flush after interrupt or quit.

If I S I G is set, each input character is checked against the special
control characters INTR, SWTCH, and QUIT. If an input charac­
ter matches one of these control characters, the function associat­
ed with that character is performed. If ISIG is not set, no check­
ing is done. Thus these special input functions are possible only if
I S I G is set. These functions may be disabled individually by
changing the value of the control character to an unlikely or im­
possible value (for example, 0377).

If ICANON is set, canonical processing is enabled. This enables
the erase and kill edit functions, and the assembly of input charac­
ters into lines delimited by NL, EOF, and EOL. If ICANON is not
set, read requests are satisfied directly from the input queue. A
read will not be satisfied until at least MIN characters have been
received or the timeout value TIME has expired between charac­
ters. This allows fast bursts of input to be read efficiently while
still allowing single character input. The MIN and TIME values
are stored in the position for the EOF and EOL characters, respec­
tively. The time value represents tenths of seconds.

If XCASE is set, and if ICANON is set, an uppercase letter is ac­
cepted on input by preceding it with a \ character, and on output
is preceded by a \ character. In this mode, the following escape
sequences are generated on output and accepted on input:

for: use:
\'
\ !
\"

{ \ (
} \)
\ \\

For example, A is input as \a, \n as \ \n, and \N as \ \ \n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible.
If ECHO and ECHOE are set, the erase character is echoed as
ASCII BS SP BS, which will clear the last character from a
CRT screen. If ECHOE is set and ECHO is not set, the erase char­
acter is echoed as ASCII SP BS. If ECHOK is set, the NL charac-

February, 1990
Revision C

9

termio(7) termio(7)

10

ter will be echoed after the kill character to emphasize that the line
will be deleted. Note that an escape character preceding the erase
or kill character removes any special function. If ECHONL is set,
the NL character will be echoed even if ECHO is not set This is
useful for terminals set to local echo (so-called half duplex). Un­
less escaped, the EOF character is not echoed. Because EOT is
the default EOF character, this prevents terminals that respond to
EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues
associated with the quit, switch, and interrupt characters will not
be done.

The initial line-discipline control value is all bits clear.

The primary ioctl(2) system calls have the form

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this fonn are

TCGETA Get the parameters associated with the termi­
nal and store in the termio structure refer­
enced by arg.

TIOCGPGRP

TIOCSPGRP

TCSETA

TCSETAW

TCSETAF

The current terminal process group is placed
into the word at the address contained in argo

The address pointed to by arg contains a word,
typically a process ID, that becomes the pro-
cess group for the controlling terminal.

Set the parameters associated with the terminal
from the structure referenced by arg. The
change is immediate.

Wait for the output to drain before setting the
new parameters. This form should be used
when changing parameters that will affect out­
put

Wait for the output to drain, then flush the in­
put queue and set the new parameters.

February, 1990
RevisionC

termio(7)

Additional ioctl(2) calls have the form

ioctl <fildes, command, arg)
int arg;

The commands using this form are

termio(7)

TCSBRK Wait for the output to drain. If arg is 0, then
send a break (zero bits for 0.25 seconds).

TCXONC Start/stop control. If arg is 0, suspend output;
if 1, restart suspended oU1put; if 2, suspend in­
put; if 3, restart suspended input.

TCFLSH If arg is 0, flush the input queue; if 1, flush the
output queue; if 2, flush both the input and out­
put queues.

The following ioctl(2) calls take the form

ioctl <fildes, command, 0)

They are for modem control; not all devices support all or any of
them. If any are supported then UIOCTTSTAT is supported. The
default is UIOCNOMODEM/UIOCNOFLOW. All these are
"remembered" when a device is closed and reopened again.

The following are mutually exclusive (on some systems
DTR/DCD are named in reverse order: here DCD is the input,
DTR the output).

UIOCMODEM Modem control (DTR/DCD) is enabled (DCD
is required before a device can be opened, if it
is removed the device is "hung up," and on
opening DTR is asserted); the default is "on"
for /dev/modemand /dev/ttyO.

UIOCEMODEM "European style" modem control. Like
UIOMODEM except that DTR is not asserted
until RI (ring interrupt) is detected.

UIOCNOMODEM No modem control. DTR is still asserted,
DCD is ignored, and opens always complete
without waiting.

UIOCDTRFLOW The DCD (on some printers this is the DTR
line) is used for flow control. It must be as­
serted before characters can be transmitted;
the default is "on" for / dev /printer and
/dev/ttyl.

February, 1990 11
RevisionC

termio(7) termio(7)

12

The next two commands are also mutually exclusive. Again,
CTS/RTS are sometimes named in reverse order. Here RTS is the
output, CTS the input.

UIOCNOFLOW

UIOCFLOW

UIOCTTSTAT

Hardware flow control is disabled. RTS is as­
serted before transmitting (or asserted all the
time). CTS is ignored.

Hardware flow control is enabled. RTS is as­
serted before transmitting. CTS must be as­
serted by the other end before transmission
can start. (This is required for every charac­
ter.)

This returns 3 bytes. The first is 1 if UIOC­
MODEM is enabled. The second is 1 if
UIOCDTRFLOW is enabled and the third is 1 if
UIOCFLOW is enabled.

The following ioctl(2) calls have the form

ioctl (fildes, command, pArg)
int *pArg;

The commands that use this form are

FIONREAD

FIONBIO

FIOASYNC

Return the number of characters currently in a
terminal's input buffer into the integer pointer
*pArg.

If the integer referenced by the pointer pArg is
1, then tum on nonblocking 10. If it is 0, turn
it off. If nonblocking 10 is turned on, then
read or write will return without blocking (and
return the error EWOULDBLOCK) if it is not
possible to complete the transfer immediately.

If the integer referenced by the pointer pArg is
1, tum on I/O signalling. If it is 0, turn it off.
If I/O signalling is turned on then the signal
SIGIO will be sent whenever input is avail­
able to the device. Care should be taken that
all the processes in the tty's process group can
respond (or ignore) this signal if it is enabled.

Some devices are streams based. In order for them to respond to
the ioctl calls discussed here, the streams module (line discip­
line) line must be pushed on the stream. For most logged in ter-

February, 1990
RevisionC

termio(7) termio(7)

minals, this is done by fete/getty as part of the logging in
process. Refer to streams(7) and lineyush(3) for more in­
formation about how to do this if it is required.

SERIAL MANAGER SUPPORT
The following new ioetl calls were added to support the Serial
Manager running under NUX 2.0. Five of the calls have the form

ioetl (fildes, command, 0)

The commands using this form are as follows:

TCRESET Reset the serial line identified by filedes.

TCSETDTR Drive the DTR line high for the serial line
identified by filedes. This turns DTR on.

TCCLRDTR Drive the DTR line low for the serial line
identified by filedes. This turns DTR off.

TCSBRKM Set break mode for the serial line identified by
filedes. This starts a line break signal.

TCCBRKM Clear break mode for the serial line identified by
filedes. This terminates a line break signal.

Two of the calls have the form

ioetl (fildes, command, arg)
int *arg;

The commands using this form are as follows:

TCSETSTP Set the stop character for flow control for the
serial line identified by filedes. arg points to a
byte containing the new stop character.

TCSETSTA Set the start character for flow control for the
serial line identified by filedes. arg points to a
byte containing the new start character.

One call has the form

ioetl (fildes, command, arg)
struet serstat *arg;

where the serstat structure has the following format:

February, 1990
RevisionC

13

terrnio(7) terrnio(7)

struct serstat {

} ;

unsigned long ser_frame;
unsigned long ser_ovrun;
unsigned long ser_parity;
unsigned long ser cts;
unisgned long ser=inflow;

unsigned long ser_outflow;

The command using this form is as follows:

/*framing errors*/
/*overrun errors*/
/*parity errors */
/*CTS signal */
/*input flow */
/*control */
/*output flow */
/*control */

TCGETSTAT Get status information for the serial identified by
filedes and store it in the B termio structure
referenced by argo The ser_frame,
ser_ovrun, and seryarity members of
the serstat structure represent the error
counts that have been tallied since the last call to
TCGETSTAT. The ser cts member indicates
the current status of the CTS signal. A true
value indicates that CTS is on (high); otherwise,
CTS is off (low). If the ser inflow member
is true, input is currently blocked due to flow
control. If the ser outflow member is true,
output is currently blocked due to flow control.

4.2 BSD COMPATIBLE FEATURES

14

Local Special Characters
When job control is active, there is a 1 tchars structure associat­
ed with each terminal. Two fields are used, which define charac­
ters to stop a process. The other fields are for compatibility with
past and future systems.

struct ltchars {
char t_suspc; /* stop process signal */
char t_dsuspc; /* delayed stop process */

/* signal */
char t _rprntc; /* Not used */
char t_flushc; /* Not used */
char t_werase; /* Not used */
char t lnextc; /* Not used */ -

} ;

By default, these characters are disabled (set to -1). Traditionally
CONlROL-Z is used for the suspend character and CON1ROL-Y for
the delayed suspend.

February, 1990
RevisionC

termio(7)

TIOCSLTC

termio(7)

The arg panuneter to the ioctl call (as
shown above) is the address of a 1 tchars
structure which defines the new local charac­
ters.

TIOCGLTC The arg parameter to the ioctl is the address
of a 1 tchars structure into which the current
set of special characters is placed.

Compatibility Modes
An additional mode word is recognized by the BSD compatible
TTY driver. It is used to set and clear the job control "tostop"
bit. When set, processes running in the background which write
on the terminal will be sent a SIGTTOU signal. When BSD com­
patible signals are used, background processes which read from
TTY will be sent SIGTTIN.

TOSTOP Oxl-Send SIGTTOU for background output.

TIOCSCOMPAT The arg parameter to the ioctl call is the ad­
dress of an integer containing the new value of
the compatibility mode word.

TIOCGCOMPAT The arg panuneter is the address of an integer
variable chosen to receive the new compatibil­
ity mode word.

FILES
/dev/tty
/dev/tty*
/dev/console

SEE ALSO
stty(l), getty(IM), fork(2), ioctl(2), read(2),
setpgrp(2), lineyush(3), signal(3), streams(7).

February, 1990
RevisionC

15

termios(7P) termios(7P)

NAME
termios - A/UX® POSIX general terminal interface

SYNOPSIS
#include <termios.h>

DESCRIYfION

1

Part of the A/UX POSIX environment is a general terminal inter­
face for controlling asynchronous communications ports.

When a terminal file is opened, it normally causes the process to
wait until the connection is established. In practice, user programs
seldom open these files; getty(IM) opens them, and they be­
come a user's standard input, output, and error files.

The file / dev / tty is, in each process, the control terminal asso­
ciated with the process group of that process. Programs or shell
sequences use it to ensure that their messages appear on the termi­
nal' no matter how output is redirected. Also, programs that
demand an output' filename accept / dev / tty, so it is not neces­
sary to determine which terminal is being used.

Opening a terminal device causes the process to block until the
connection is established. If the 0 NONBLOCK flag is set,
open(2) returns a file descriptor without waiting for the connec­
tion to be established.

A terminal may have a foreground process group associated with
it. Certain characters have special functions on input or output.
The foreground process group plays a role in the handling of
signal-generating characters.

Shells that support job control can allocate the terminal to dif­
ferent jobs, or process groups, by placing related processes in a
single process group and associating this process group with the
terminal. The associated process group of a terminal may be set
or examined by a process in the process group by using
tcsetpgrp(3P) and tcgetpgrp(3P).

A terminal may belong to a process as its controlling terminal.
Each process of a session that has a controlling terminal has the
same controlling terminal. A terminal may be the controlling ter­
minal for at most one session. If the process ID of the calling pro­
cess is equal to the process group ID and the process has no con­
trolling terminal, the next open of a terminal without a control­
ling process causes the opened terminal to become the controlling
terminal for the process. If a process that is not a session leader

February, 1990
RevisionC

termios(7P) termios(7P)

opens a terminal file or the 0 NOCTTY flag is used when calling
open, the terminal does not become the controlling terminal of
the process. If the 0 GETCTTY flag is used when calling open,
the terminal becomes the controlling terminal of the calling pro­
cess. When a controlling terminal becomes associated with a ses­
sion, its foreground process group is set to the process group of
the session leader.

The controlling terminal is inherited by a child process during a
fork (see fork(2)). A process relinquishes its controlling termi­
nal when it changes its process group by using setsid(2).
When a controlling process terminates, the foreground process
group of its controlling terminal is set to O. This allows the termi­
nal to be acquired as a controlling terminal by a new process
group of the session leader.

A terminal device associated with a terminal device file may
operate in full-duplex mode so that characters may arrive even
while output is occurring. Each terminal device file has associated
with it an input queue, into which incoming characters are placed
by the system before being read by a process. The system im­
poses a limit, MAX_INPUT, on the number of bytes that may be
stored in the input queue. If MAX INPUT is exceeded, the queue
is flushed. -

A terminal device file may be in canonical mode or noncanonical
mode. The mode of the terminal device file determines the
method of input processing.

In canonical-mode input processing, terminal input is processed in
units of lines. A line is delimited by a newline (\ n) character and
an end-of-file (BOp) or end-of-line (EOL) character. This means
that a read request is not satisfied until an entire line is typed or a
signal is received. Also, no matter how many characters are re­
quested by the read, at most one line is returned. It is not neces­
sary to read a whole line at once; any number of characters, even
one, may be requested in a read without losing information.
MAX_CANON is the limit on the number of bytes in a line. If this
limit is exceeded, the input buffer is flushed. Erase and kill pro­
cessing occurs during canonical-mode input processing.

In noncanonical-mode input processing, input characters are not
assembled into lines, and erase and kill processing does not occur.
The values of the special characters MIN and TIME are used to
determine how to process the characters received. MIN and TIME

February, 1990 2
Revision C

terrnios(7P) termios (7P)

3

are defined in the c _ cc array of special control characters.

MIN represents the minimum number of characters that should be
received when the read is satisfied. TIME is a timer of 0.1 second
granularity that is used to time out data characterized by short
bursts and short-teon data transmissions. The four possible com­
binations for MIN and TIME are as follows:

MIN>O, TIME>O
In this case TIME serves as an interbyte timer and is ac­
tivated after the first byte is received. Since it is an inter­
byte timer, it is reset after a byte is received. When the
first byte is received, the interbyte timer is started. If MI N
bytes are received before the timer expires, the read is
satisfied. If the timer expires before MIN bytes are re­
ceived, the bytes received to that point are returned to the
user. Note that if TIME expires, at least one byte is re­
turned because the timer is not started unless a byte has
been received. In this case, the read blocks until the MIN
and TIME mechanisms are activated by the receipt of a
byte.

MIN>O, TIME=O
When the value of TIME is 0, the timer plays no role, and
only MIN is significant A pending read is not satisfied un­
til MIN bytes are received. A program that sets TIME to 0
when reading record-based teoninal I/O may block
indefinitely on a read operation.

MIN=O, TIME>O
When MIN is 0, TIME no longer represents an interbyte ti­
mer. TIME now serves as a read timer "that is activated as
soon as the read(2) is processed. A read is satisfied as
soon as a single byte is received or the read timer expires.
Note that if the timer expires, no byte is returned. If the ti­
mer does not expire, the only way the read can be satisfied
is if a byte is received. In this case, reads do not block
indefinitely waiting for a byte; if no byte is received within
TIME*O.l seconds after the read is initiated, the read re­
turns 0 bytes.

MIN=O, TIME=O
The minimum of either the number of bytes requested or
the number of bytes currently available is returned without
waiting for more bytes to be received.

February, 1990
RevisionC

termios(7P) termios(7P)

Reads are also dependent on the whether the 0 NONBLOCK flag is
set by the open(2) or fcntl(2) call. If the O=NONBLOCK flag is
not set, then a read request blocks until data is available or a signal
is received. If the 0 NONBLOCK flag is set, then a read completes
without blocking in one of three ways:

1. If there is enough data available to satisfy the entire request,
the read completes successfully, having read all the requested
data, and returns the number of bytes read.

2. If there is not enough data available to satisfy the entire re­
quest, the read completes successfully, having read as much
data as possible, and returns the number of bytes it was able
to read.

3. If there is no data available, the read returns -1, and errno
is set to EAGAIN.

Any attempt by a process in a background process group to read
from its controlling terminal causes its process group to be sent a
SIGTTIN signal unless the reading process is ignoring or block­
ing SIGTTIN , or the process group of the reading process is or­
phaned. Then the read(2) returns -1 with errno set to EIO, and
no signal is sent The default action of SIGTTIN is to stop the
process to which it is sent

Any attempt by a process in a background process group to write
to its controlling terminal will cause the process group to be sent a
SIGTTOU signal unless one of the following special cases apply:
If TOSTOP is not set, or if TOSTOP is set and the process is ignor­
ing or blocking SIGTTOU, the process is allowed to write to the
terminal, and SIGTTOU is not sent. If TOSTOP is set and the pro­
cess group of the writing process is orphaned and if the writing
process is not ignoring or blocking SIGTTOU, the write(2) re­
turns -1 with errno set to EIO, and no signal is sent

Routines that need to control terminal characteristics do so by
modifying the termios structure for the device. This structure
is defined in <termios . h> as follows:

struct ter.mios {
lcflag_t long
lcflag_t long
lcflag_t long
lcflag_t long
char

February, 1990
RevisionC

c_iflag;
c_oflag;
c_cflag;
c Iflag;
c=line;

4

termios(7P) termios(7P)

5

cc t char
} ;

The c iflag field describes the basic terminal input control.
The following flags are defined by POSIX:

I GNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
I GNPAR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 Enable input parity check.
ISTRIP 0000040 Strip character.
INLCR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.
ICRNL 0000400 Map CR to NL on input.
IXON 0002000 Enable start/stop output control.
IXOFF 0010000 Enable start/stop input control.

In addition, NUX supports the following flags:

ICRNL 0000400 Map CR to NL on input.
IUCLC 0001000 Map uppercase to lowercase on input.
IXANY 0 004000 Enable any character to restart output.

If IGNBRK is set, a break condition detected on input is ignored; it
is not put on the input queue and therefore not read by any pro­
cess. If IGNBRK is not set and BRKINT is set, the break condi­
tion flushes both the input and output queues, and if the terminal is
the controlling terminal of a foreground process group, a SIGINT
signal is sent to that foreground process group. If neither
IGNBRK nor BRKINT is set, a break condition is read as a single
"'l),' or if PARMRK is set, as '\377,' "D,' "D.' If IGNPAR is set, a
byte with a framing or parity error is ignored.

If P ARMRK is set and I GNP AR is not set, a byte with a framing or
parity is put on the input queue as the three-character sequence
'\377,' ''D,' X, where '\377,' ''D,' is a two-character flag and X is
the data of the byte received in error. To avoid ambiguity in this
case, if ISTRIP is not set, a valid character of '\377' is given to
the application as '\377,' '\377.' If neither P ARMRK nor I GNP AR
is set, a framing or parity error is put on the input queue as a sin­
gle character, ''D.'

If INPCK is set, input parity checking is enabled. If INPCK is not
set, input parity checking is disabled, allowing output parity gen­
eration without input parity errors. Note that whether input parity

February, 1990
RevisionC

termios(7P) termios(7P)

checking is enabled or disabled is independent of whether parity
detection is enabled or disabled. If parity detection is enabled but
input parity checking is disabled, the hardware to which the termi­
nal device file is connected recognizes the parity bit, but the termi­
nal special file does not check whether this bit is set correctly.

If I S TRI P is set, valid input characters are first stripped to 7 bits;
otherwise, all 8 bits are processed.

If INLCR is set, a received newline (NL) character is translated
into a RETURN character. If IGNCR is set, a received RETURN
character is ignored (not read). If ICRNL is set, a received RE­
TURN character is translated in an NL character.

If IUCLC is set, a received uppercase alphabetic character is
translated into the corresponding lowercase character.

If IXON is set, start/stop output control is enabled. A received
STOP character suspends output and a received START character
restarts output. All start/stop characters are not read, but perform
flow-control functions. If IXANY is set, any input character res­
tarts output that was suspended.

If IXOFF is set, the system transmits START/STOP characters
when the input queue is nearly empty or full.

The initial input control value is all-bits-clear.

The c_oflag field specifies the system treatment of output. PO­
SIX defines the following flag for c_oflag:

OPOST 0000001 Postprocess output.

In addition, NUX supports the following flags:

OLCUC 0000002 Map lowercase to uppercase on output.
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL 0000010 Map CR to NL on output.
ONOCR 0000020 No CR output at column O.
ONLRET 0000040 Use NL to perform CR function.
OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NNUL.
NLDLY 0000400 Select newline delays:
NLO 0
NL1 0000400
CRDLY 003000 Select carriage-return delays:

CRO 0
CR1 0001000

February, 1990
Revision C

6

termios(7P) termios (7P)

7

CR2
CR3

TABDLY
TABO
TAB1
TAB2
TAB3

BSDLY
BSO
BS1

VTDLY
VTO
VT1

FFDLY
FFO
FF1

0002000
0003000
0014000
0
0004000
0010000
0014000
0020000
0
0020000
0040000
0
0040000
0100000
0
0100000

Select horizontal tab delays:

Expand tabs to spaces.
Select backspace delays:

Select vertical tab delays:

Select fonn feed delays:

If OPOST is set, output characters are postprocessed as indicated
by the remaining flags; otherwise, characters are transmitted
without change.

If OLCUC is set, a lowercase alphabetic character is transmitted as
the corresponding uppercase character. This function is often
used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL
character pair. If OCRNL is set, the CR character is transmitted as
the NL character. If ONOCR is set, no CR character is transmitted
when at column 0 (first position). If ONLRET is set, the NL char­
acter is assumed to do the carriage-return function, the column
pointer are set to 0, and the delays specified for" CR are used. Oth­
erwise, the NL character is assumed to do just the line feed func­
tion; the column pointer remains unchanged. The column pointer
is also set to 0 if the CR character is actually transmitted.

The delay bits specify how long the transmission stops to allow
for mechanical or other movement when certain characters are
sent to the tenninal. In all cases a value of 0 indicates no delay. If
OFILL is set, fill characters are transmitted for delay instead of a
timed delay. This is useful for high-baud-rate tenninals that need
only a minimal delay. If OFDEL is set, the fill character is DEL,
otherwise NUL.

February, 1990
RevisionC

termios(7P) termios(7P)

IT a form feed delay or vertical tab delay is specified, it lasts for
about 2 seconds.

The newline delay lasts about 0.10 seconds. If ONLRET is set, the
carriage-return delays are used instead of the newline delays. If
OFILL is set, two fill characters will be transmitted.

The carriage-return delay, type 1, is dependent on the current
column position. Type 2 is about 0.10 seconds, and type 3 is
about 0.15 seconds. If OFILL is set, delay type 1 transmits two
fill characters, and type 2, four fill characters.

The horizontal tab delay, type 1, is dependent on the current
column position. Type 2 is about 0.10 seconds. Type 3 specifies
that tabs are to be expanded into spaces. If OFILL is set, two fill
characters are transmitted for any delay.

The backspace delay lasts about 0.05 seconds. If OFILL is set,
one fill character is transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

The c cflag field describes the hardware control of the termi­
nal. roSIX defines the following flags:

CS I ZE 0000060 Character size:
CS5 0 5 bits
CS 6 0 0 0 0 020 6 bits
CS 7 0 0 0 0 040 7 bits
CS 8 0 0 0 0 0 60 8 bits

C S TOPB 0 0 0 0 1 0 0 Send two stop bits, else one.
CREAD 0000200 Enable receiver.
P ARENB 0000400 Enable parity.
P ARODD 0 0 0 1 000 Odd parity, else even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.

In addition, NUX POSIX supports the following flags:

LOBLK 0010000 Block layer output
CBAUD 0 0 0001 7 Baud rate:

BO 0 Hang up
B50 0 0 0 0 0 0 1 50 baud
B75 0000002 75 baud
B110 0000003 110 baud
B134 0000004 134.5 baud

February, 1990
Revision C

8

termios(7P) termios(7P)

9

B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B9600 0000015 9600 baud
B19200 0000016 19200 baud
B38400 0000017 38400 baud
EXTA 0000016 External A
EXTB 0000017 External B

The CBAUD bits specify the baud rate. The zero baud rate, BO, is
used to hang up the connection. If BO is specified, the data­
terminal-ready signal is not asserted. Normally, this disconnects
the line. For any particular hardware, impossible speed changes
are ignored.

The CSIZE bits specify the character size in bits for both
transmission and reception. This size does not include the parity
bit, if any. If CSTOPB is set, two stop bits are used, otherwise,
one stop bit. For example, at 110 baud, two stops bits are re­
quired.

If P ARENB is set, parity generation and detection is enabled, and a
parity bit is added to each character. If parity is enabled, the
PARODD flag specifies odd parity if set; otherwise, even parity is
used.

If CREAD is set, the receiver is enabled. Otherwise, no characters
can be received.

If HUPCL is set, the line is disconnected when the last process
with the line open closes it or terminates. That is, the data­
terminal-ready signal is not asserted.

If CLOCAL is set, the line is assumed to be a local, direct connec­
tion with no modem control. Otherwise, modem control is as­
sumed.

If LOBLK is set, the output of a job control layer is blocked when
it is not the current layer. Otherwise, the output generated by that
layer is multiplexed onto the current layer.

February, 1990
RevisionC

termios(7P) termios(7P)

The initial hardware control value after open is B300, CS8,
CREAD, HUPCL.

The c Iflag field of the argument structure is used by the line
discipline to control terminal functions. The basic line discipline
(0) provides the following:

I S I GOO 00001 Enable signals.
I CANON 00 0 0 0 02 Enable canonical input (erase and

kill processing).
IEXTEN Enable extended functions.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS.
ECHOK 0000040 Echo NL after kill character.
ECHONL 0000100 Echo NL.
NOFLSH 0000200 Disable flush after interrupt or quit.
TOS TOP 0100000 Send S I GTTOU for background output

In addition, A/UX provides:

XCASE 0000004 Enable canonical uppercase and
lowercase presentation.

If I S I G is set, each input character is checked against the special
control characters INTR. susP, SWTCH. and QUIT. If an input
character matches one of these control characters. the function as­
sociated with that character is performed. If ISIG is not set, no
checking is done. Thus these special input functions are possible
only if ISIG is set. These functions may be disabled individually
by changing the value of the control character to an unlikely or
impossible value, such as 0377.

If I CANON is set, canonical processing is enabled. This enables
the erase and kill edit functions as well as the assembly of input
characters into lines delimited by NL, EOF, and EOL. If I CANON
is not set, read requests are satisfied directly from the input queue.
A read is not satisfied until at least MIN characters have been re­
ceived or the timeout value TIME has expired between characters.
This allows fast bursts of input to be read efficiently while still al­
lowing single character input The MIN and TIME values are
stored in the position for the EOF and EOL characters, respective­
ly. The time value represents tenths of seconds.

There are currently no extended functions; therefore, the IEXTEN
option has no effect

February, 1990 10
RevisionC

termios(7P) termios(7P)

11

If XCASE is set and if ICANON is set, an uppercase letter is ac­
cepted on input by preceding it with a \ character and is output
preceded by a \ character. In this mode, the following escape se­
quences are generated on output and accepted on input:

for: use:
\'
\ !
\'"

{ \ (
} \)
\ \\

For example, A is input as \a, \n as \ \n, and \N as \ \ \n.

If ECHO is set, characters are echoed as received.

When I CANON is set, the following echo functions are possible.
If ECHO and ECHOE are set, the erase character is echoed as
ASCII BS- SP- BS , which clears the last character from a CRT
screen. If ECHOE is set and ECHO is not set, the erase character is
echoed as ASCII SP-BS . If ECHOK is set, the NL character is
echoed after the kill character to emphasize that the line is deleted.
Note that an escape character preceding the erase or kill character
removes any special function. If ECHONL is set, the NL character
is echoed even if ECHO is not set. This is useful for terminals set
to local echo (so-called half duplex). Unless escaped, the EOF
character is not echoed. Because EOT is the default EOF charac­
ter, this prevents terminals that respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues
associated with the quit, suspend, switch, and interrupt characters
is not done.

The initial line-discipline control value is all-bits-clear.

The special characters with their default values and functions are
as follows:

INTR

QUIT

CONlROL-C. If the I S I G flag is enabled, generates
a SIGINT signal that is sent to all processes in the
distinguished process group associated with the ter­
minal.

ASCII FS. If the I S I G flag is enabled, generates a
S I GQUI T signal that is sent to all processes in the
distinguished process group associated with the ter­
minal.

February, 1990
RevisionC

termios(7P) termios(7P)

ERASE DELETE. If the I CANON flag is set, erases the
preceding character. It does not erase beyond the
start of a line, as delimited by an NL, EOF, or EOL
character.

KILL CONfROL-U. If the ICANON flag is set, deletes the
entire line, as delimited by an NL, EOF, or EOL
character.

EOF CONfROL-D. If the ICANON flag is set when this
character is received, immediately pass to the pro­
gram all the characters waiting to be read without
waiting for a newline, and discard the EOF. If there
are no characters waiting, zero characters are passed
to the program to indicate an end-of-file condition.

NL ASCII LF. If the I CANON flag is set, acts as the line
delimiter (\n). It cannot be changed.

EOL ASCII NUL. If the I CANON flag is set, acts as an
additional line delimiter similar to NL .

SUSP CONTROL-Z. If the I S I G flag is set, generates a
S I GT S TP signal that is sent to all processes in the
distinguished process group associated with the ter­
minal.

STOP CONTROL-So If IXON or IXOFF flag is set, tem­
porarily suspends output. This character is used on
terminals to prevent output from disappearing before
it can be read.

START CONTROL-Q. If the IXON or IXOFF flag is set,
resumes output that has been suspended by a STOP
character.

SWTCH CONTROL-Z. If used by the shell-layering facility,
shl, changes the current layer to the control layer.

The START and STOP characters cannot be changed. The values
for INTR, QUIT, ERASE, KILL, EOF, EOL, and SUSP can be
changed by using tcsetattr(3P). ERASE, KILL, and EOF
characters may be escaped by preceding the character with a \; in
this case, no special function is performed.

c _line specifies the line discipline number for the terminal. The
basic line discipline number is 0; this is currently the only line dis­
cipline supported.

February, 1990
RevisionC

12

termios(7P) tennios (7P)

13

Special control characters are defined by the c cc array in the
termios structure. The subscript names and descriptions are as
follows:

VEOF EOF character
VEOL EOL character
VERASE ERASE character
VINTR INTR character
VKILL KILL character
VQUI T QUIT character
VSUSP SUSP character
VMIN MIN character
VT IME TIME character

If a modem disconnect is detected by the terminal interface for a
controlling terminal and if CLOCAL is not set in the c cflag
field for the terminal, a S I GHUP signal is sent to the controlling
process associated with the terminal. Unless other arrangements
were made (see signal(3», this causes the controlling process
to terminate.. Any subsequent read from the terminal device re­
turns an end-of-line indication until the device is closed. Thus,
processes that read a terminal file and test for end-of-file can ter­
minate appropriately after a disconnect Any subsequent
write(2) to the terminal device returns -1, with errno set
toE I 0, until the device is closed.

The last process to close a terminal device file shall cause any out­
put to be sent to the device and any input to be discarded. If
HUPCL is set in the control structure and the communications port
supports a disconnect function, the terminal device performs a
disconnect.

The following functions are provided for controlling the terminal
interface:

cfgetispeed(3P) Return the input baud rate.

cfgetospeed(3P) Return the output baud rate.

cfsetispeed(3P) Set the input baud rate.

cfsetospeed(3P) Set the output baud rate.

tcdrain(3P) Wait until all written data is transmitted.

tcflow(3P) Suspend or restart output or input.

tcfl ush(3P) Discard data not transmitted.

February, 1990
RevisionC

termios (7P) termios (7P)

tcgetattr(3P) Get terminal attributes.

tcgetpgrp(3P) Get distinguished process group ID.

tcsendbreak(3P) Send a break.

tcsetattr(3P) Set terminal attributes.

tcsetpgrp(3P) Set distinguished process group ID.

FILES
/dev/tty

SEE ALSO
cfgetospeed(3P), fcntl(2), getty(1M), open(2),
tcdrain(3P), tcgetpgrp(3p), tcgetattr(3P),
tcsetpgrp(3P).

February, 1990
RevisionC

14

tty(7) tty(7)

NAME
tty - controlling terminal interface

DESCRIPTION
The file / dev / tty is, in each process, the control tenninal asso­
ciated with the process group of that process. Programs or shell
sequences use it to ensure that their messages appear on the termi­
nal, no matter how output is redirected. Also, programs that
demand an output file name will accept /dev/tty, so you don't
have to find out what terminal they are using.

FILES
/dev/tty
/dev/tty*

SEE ALSO
termio(7).

1 February, 1990
Revision C

Table of Contents

Section 8: Stand-Alone Commands

intro(8) introduction to commands executed from the A/UX Startup shell
autorecovery(8) file-system repair procedure
boot(8) ... startup procedures
esch(8) validate and repair file systems from the A/UX StartupShell
launch(8) launch an NUX kernel from the A/UX Startup environment
StartupShell(8) a command interpreter accessible from within the

NUX Startup application

Section 8

intro(8) intro(8)

NAME
intro - introduction to commands executed from the NUX
Startup shell '

DESCRIPTION
The A/UX Startup shell (see StartupShell(8) works like the
Bourne shell, but it runs under the Macintosh Operating System.
Although it runs within a Macintosh partition, this shell honors the
use of the files and directories from the NUX root partition. For
example, to list the contents of the NUX directory / etc, the usu­
al command syntax for 1 s is allowed

Is options /etc

The ability to access the files in an A/UX partition can be handy.
For example, file system maintenance can be performed without
an operable A/UX root file system (use fsck found in the
StartupShell). Another advantage is that these commands al­
low you to exercise control over the boot process through
modifications to startup files such as /etc/inittab prior to
booting A/UX (use ed under A/UX Startup). Otherwise, such a
change would require booting A/UX to make the changes, then re­
booting (at least partially) in order to see the changes take effect.

The StartupShell versions of NUX commands that are avail­
able include:

cat
chgrp
chmod
chown
cp
date
dd
dp
ed
esch
fsck
fsdb
kconfig
launch
In
Is
mkdir
mkfs

February, 1990
Revision C

1

intro(8) intro(8)

2

mknod
mv
od
pname
rm
stty

Most of these commands are documented in Section 1 of AIUX
Command Reference. However, some of them are unique to the
NUX Startup shell. Notably, those commands that provide valu­
able administration functions such as esch (see esch(8) and au­
torecovery(8» are described in the remaining pages of this
section.

February, 1990
RevisionC

autorecovery(8) autorecovery(8)

NAME
autorecovery - file-system repair procedure

DESCRIPTION
Autorecovery refers to the facilities that check and repair NUX
file systems. It includes a variety of tools, some of which run
under the NUX Startup application, and some of which run under
A/UX. Autorecovery depends on the existence of one or more
parallel file systems containing copies of critical system files.
These file systems are maintained on an incremental basis using
the appropriate autorecovery programs. The actual checking and
correction tasks are performed within the Macintosh portion of the
boot sequence and are invoked manually as desired from within
the A/UX Startup application. The checking and correction por­
tions of autorecovery can also run automatically upon booting, if
the environment has been set up properly.

autorecovery is also the name of an A/UX StartupS hell vari­
able that contains the autorecovery command string. This com­
mand string is executed whenever you boot A/UX (see Startup­
Shell(8)). The command string has been initially set to echo
no autorecovery as an indication that autorecovery is not be­
ing run.

To request autorecovery manually, run the esch command direct­
ly from the StartupShell. An alternative is to set au­
torecovery so that the desired form of the esch command is
run automatically upon booting.

The A/UX programs that help support the proper functioning of
autorecovery are those listed next with the "1M" designation.

SEE ALSO
escher(1M), eu(1M), eupdate(1M), esch(8), Startup­
Shell(8).

February, 1990
Revision C

1

boot(8) boot(8)

NAME
boot - startup procedures

DESCRIPTION
The system is started in a two-stage process. First, the Macintosh
operating system is brought up. If the Startup application has
been configured properly, the A!UX Startup shell (see Startup­
Shell(8» will be started automatically. The Startup shell either
launches A!UX automatically or prints a Startup shell prompt. If
you get the prompt, typing boot causes the boot sequence to be
initiated.

SEE ALSO
StartupShell(8),launch(8).
AIUX Installation Guide.

1 February, 1990
RevisionC

esch(8) esch(8)

NAME
esch - validate and repair file systems from the A/UX
S tartupS hell

SYNOPSIS
esch [-b] [-ccluster-number] [-f] [-v]

DESCRIPTION
esch attempts to ensure that a minimal A/UX file system exists
for a multiuser boot. When possible, it corrects bad blocks,
repairs file system inconsistencies, and replaces corrupt or missing
files. esch is intended to be run when there is reason to suspect
that the A/UX file systems have been damaged.

Flag options to e s ch are

-b Bypasses bad block checking functions.

-c cluster-number
Allows the user to specify the autorecovery cluster number.

-f Does not perform f sck (see f sck(1M)).

-v Reports any corrective measures taken.

esch must be run in the A/UX Startup environment before the
A/UX system is booted. When the system is powered on or A/UX
is rebooted, and the boot dialog is canceled by the user, the A/UX
Startup shell (see StartupShell(8)) prompt appears and the
esch command line may be entered.

Within the NUX StartupShell, esch may be set to run automati­
cally with each boot process by assigning the desired esch com­
mand line to the StartupShell variable autorecovery.

A hard disk may be divided into partitions. Each partition con­
tains one file system (see fs(4)). Information on all the partitions
on a disk is kept in the disk partition map (see dpme(4)) for that
disk. One of the fields in a dpme is the cluster number. This is
used to identify the group of partitions esch should use.

esch requires that all partitions reside on one disk. esch reads
the cluster number from nvram (see nvram(7)) and locates all
the partitions in that cluster. A cluster must contain a root parti­
tion, a swap partition, and at least one autorecovery partition. A
cluster may also contain a partition known to esch as the usr
partition. There may be multiple autorecovery partitions in a clus­
ter.

February, 1990
Revision C

1

esch(8) esch(8)

Autorecovery file systems contain copies of files that are neces­
sary for a minimal multiuser A/UX system. If new versions of
commands, programs, or files are installed on the system, the au­
torecovery file systems should be Updated using eu(1M) or
eseher(IM).

eseh will check each file system for bad blocks. This is done by
verifying that each block can be read. If possible, any blocks that
cannot be read will be spared by the hardware or replaced with al­
ternate blocks (see al tblk(4» by the software. If neither of
these is successful, the block number is added to a list of blocks
that is passed to fsck. fsek will add these blocks to a file asso­
ciated with inode one; this has the effect of removing the blocks
from the file system. Checking for bad blocks is a time­
consuming process. This phase of autorecovery may be omitted
using the -b flag option. It is advisable to occasionally run eseh
without the -b flag option to be sure any bad blocks have been
dealt with in the appropriate manner.

eseh will then run fsek on each file system. This invocation of
fsek uses the -y flag option. All questionable files will be re­
moved from the file system. If fsek should fail or if the super­
block is unreadable, a mkfs (see mkfs(IM» will be performed
on the file system.

After the file systems have been checked for consistency, e s eh
will enter the file check merge phase. The configuration master
list (see eml(4» is a list of files required for a multiuser NUX
system. This file gives rules about the attributes of each required
file. The file check merge phase of e s eh will check each file in
the eml for conformity to the specified file attributes (size, ver­
sion, check sum, permissions, and so forth). If a file does not con­
form to these rules, eseh will attempt to replace it with a copy
from an autorecovery file system. If the file in question is found
on an autorecovery file system, it must conform to the eml rules
or it will not be placed on the root or usr file system.

FILES
/ete/esehatology/init2files

SEE ALSO

2

eseher(IM), eu(IM), eupdate(1M), fsck(1M), mkfs(IM),
altblk(4), eml(4), dpme(4), fs(4), autoreeovery(8),
StartupShell(8).
"System Startup and Shutdown" inAIUX Local System Adminis-

February, 1990
RevisionC

esch(8} esch(8}

tration.

WARNINGS
e s ch must never be interrupted! Do not power off the system or
push the reset button while esch is running. If esch is interrupt­
ed, major file system damage may result or entire file systems may
be destroyed.

esch will attempt to replace files on two file systems only. These
are the root file system and a file system that is intended to be
mounted on /usr. Any other file systems will be ignored by
esch.

The superblock of a file system contains information describing
the file system. If esch is unable to read the superblock of a file
system, or if the superblock has a bad magic number, the file sys­
tem is not usable and an mkf s will be performed on the file sys­
tem. Everything on the file system will be removed! All user files
will be gone and cannot be restored, since the only files esch re­
stores will be those listed in the cml.

If a file system should become full while esch is copying a re­
placement file to it, e s ch will attempt to free up space by deleting
files from /lost+found, /tmp, /usr/lost+found, or
/usr/tmp (depending upon whether the file system is root or
usr). Subdirectories and their contents will also be removed
from these directories. If the directories have been emptied and
there is still no room to copy required files, esch will terminate
with an error.

February, 1990
Revision C

3

launch(8) launch(8)

NAME
launch - launch an NUX kernel from the NUX Startup
environment

SYNOPSIS
launch [-a] [-d] [-f] [-m] [-r] [-v] [-s] [pathname]

launch [-n] [-d] [-f] [-m] [-r] [-v] [-s] [pathname]

DESCRIPTION

1

launch loads an NUX kernel into memory and transfers control
to the kernel. launch can only be run from the NUX Startup
application shell (see StartupShell(8)). As launch
transfers control to the kernel, it passes a SCSI ID, a logical unit
number, and slice zero as parameters. The kernel uses these
parameters to locate the root file system (ROOTDEV).

When no pathname is specified, launch uses the filename on the
first line of the ASCII file / next unix. The specified kernel
(from the command line or from / next unix) is then checked
for an autoconfiguration match.

autoconfig{lM) is run when a software module is present in
the kernel, but the required hardware is missing. (Note that
autoconfig will NOT be run when hardware is present and the
software is missing.)

If autoconfig needs to be run, then the kernel newunix is
launched instead and a flag is set indicating that autoconfig is
needed.

The format of pathname can vary. If you wish to include a device
specification the format is:

(device-spec) path

device-spec is described in detail in StartupShell(8). It con­
sists of three comma-separated numbers enclosed in parentheses.
The first number is the SCSI ID for a disk, the second is the logi­
cal unit (usually zero), and the final number is a slice number. To
illustrate, the following command line launches the sunix ker­
nel located within the file system in slice 2 of the disk that is as­
signed SCSI ID 1:

launch (1,O,2)/src/sys/psu/sunix

In this example, the kernel would use slice 0 of the disk with SCSI
ID 1 as the location for the root partition. So even though the ker­
nel is loaded from a file system in slice 2, the root file system is

February, 1990
RevisionC

launch(8) launch(8)

still presumed to be in slice zero of the same disk. When the dev­
ice specification is not provided the values passed to the kernel for
the root disk device are taken from the ROOT shell variable. This
shell variable is changed using the menu options of the NUX
Startup application shell (see StartupShell(8». Once set, its
value is retained even when the system is shut down.

To allow the kernel to reside in a different location from the root
disk device, you can use the - r flag option while setting the ROOT
shell variable as desired for the location of the root disk device.
The parameters for SCSI ID and logical disk number supplied in
the launch command line will be used to locate the kernel, but will
not be passed to the kernel as the parameters identifying the root
disk device. Instead the parameters passed to identify the root disk
device (SCSI ID and logical unit number) will be those stored in
the ROOT shell variable.

FLAG OPTIONS
The following flag options are interpreted by launch:

-a Always run autoconfig. That is, run autoconfig even
if the kernel appears to match the hardware. Launching
newunix turns this option on automatically.

-d Print debugging output. Displays the contents of the
auto_data structure. Obscure to anyone not familiar with
the kernel.

-f Forces all floppy disks to be ejected and waits for the inser­
tion of a floppy containing an NUX file system.

Note: No checks are made to ensure the inserted
floppy actually has an NUX file system on it.)

-m The kernel file is on a Macintosh file system.

-n Never run autoconfig. That is, don't run autoconfig
even if the kernel and the hardware are mismatched.

-r Use the root partition on the device specified by the $ROOT
variable, rather than the device specified by the kernel path­
name.

-v Selects a more verbose way of booting the system. The pro­
gress bar is not displayed during the process of booting. In­
stead of routing boot messages to the normally hidden NUX
console window, they are routed directly to a solitary console
emulator window. The console emulator window disappears

February,1990
RevisionC

2

launch(8) launch(8)

if the boot reaches multiuser mode successfully, at which
time the Macintosh login dialog box appears to replace the
console emulator window.

-s Load a symbol table along with the kernel, so that a kernel
containing the debugger driver module can offer text descrip­
tions of execution addresses when it is activated.

EXAMPLES
launch

Launches the default kernel on the current root disk device.

launch /unix

Launches the A/UX kernel located in / unix on the current root
disk device.

FILES
/nextunix
/newunix

/unix

Contains name of A/UX kernel to launch
NUX kernel to launch if autoconfiguration
is needed
The usual name of the current kernel

SEE ALSO
kconfig(1M), StartupShell(8).

WARNINGS

3

launch will not start a kernel if a PMMU (MC68851) is not
present.

February, 1990
Revision C

StartupShell(8) StartupShell(8)

NAME
StartupShell - a command interpreter accessible from
within the NUX Startup application

SYNOPSIS
StartupShell

DESCRIPTION
NUX Startup is a Macintosh® program that can read and execute
programs that have been compiled with a special set of libraries
under the A/UX® operating system. A/UX Startup provides a
command language that executes commands typed at the console
or chosen from menus. The language is similar to but simpler
than sh(1), csh(1), and ksh(1). Programs run by this shell must
reside in a Macintosh file system.

Input
Keyboard input and program output is displayed in a permanently
displayed window-the shell window. A subset of the ordinary
NUX terminal interface is supported; specifically, the erase, kill,
end-oJ-file, and end-oj-line signals; input flags for remapping char­
acters; output flags not associated with delays; and local flags not
associated with signals. The control flags are not supported. The
end-oj-line character should not be changed.

The following characters have a special meaning to the shell and
help delimit words unless escaped:

< > newline space tab

To suppress their special interpretation, precede any of these char­
acters with a backs lash (\). This process is also called an escape,
and the backslash is called an escape character when used for this
purpose. An escaped newline is treated the same as a blank char­
acter. All special characters enclosed between a pair of single
quotation marks (' '), except another single quotation marks, are
treated as if they were escaped. Most special characters enclosed
within double quotation marks (n n) are treated as if they were es­
caped, except the backslash (\), comma (,), and dollar sign ($).

Each line of input is considered to be a single command. A com­
mand is broken into words at blanks (a blank is a space or a tab)
except when the blanks are escaped.

Text enclosed within double quotation marks that contains refer­
ences to variables is processed so that variables are replaced by
their present values. References to variables enclosed within sin-

February, 1990
RevisionC

1

St art upShell (8) StartupShell (8)

2

gle quotation marks are not replaced with their present value.

A backslash (\) in the first word of a command causes automatic
substitution to be disabled for that command.

The NUX Startup shell prompts with the value of the PSl vari­
able before reading a command.

Shell Variables
The shell allows certain words to be used as variables. The name
of a variable is a sequence of letters, digits, or underscores begin­
ning with a letter or underscore. The exception is the exit status
variable (?).

Variables may be assigned values by entering:

name=value

where value is a single word, or by entering:

name= n multiple-word-value n

where multiple-word-value is several words. A dollar sign ($) fol­
lowed by a variable name is substituted with the present value of a
variable. Alternately, you can enclose the variable name in curly
braces:

$ {name}

The braces are required only when the name is followed by a
letter, digit, or underscore that is not part of the variable name.
After variable substitution, the results of substitution are scanned
for internal field separator characters (space and tab) and split into
distinct arguments where such characters are found. Explicit null
arguments (n n or ") are retained. Implicit null arguments
(those resulting from variables that have no values) are removed.

A text string may be intrepreted as a variable name without the
dollar sign (or braces) if it is the first word of a command line and
it is the name of an "automatic" variable. Each time a command
line is entered, the first word is checked for matches with any of
automatic variables already defined. If there is a match then the
value is substituted. The process is not repeated on the replace­
ment.

Whereas normal variables are created when they are assigned
values, automatic variables must be declared as such (see aut 0 in
the section "Built-in Commands"). The variables au­
torecovery and autolaunch are examples of automatic

February, 1990
RevisionC

Start upShell (8) Start upShell (8)

variables.

The following variables are built into the NUX Startup shell:

PATH Specify the search path for commands (see
the section "Program Execution Environ­
ment" below).

P S 1 Specify the prompt string, by default
"startup* ."

T z Specify the NUX time-zone variable (see
environ(5)).

HOME Specify the default argument (home directo­
ry) for the cd and chdi r commands.

ROOT Specify the default argument (home root) for
the chroot command.

autorecovery Specify the command string for verifying the
integrity of the file system.

autolaunch Specify the command string for the kernel
launch program (see below).

cwd Specify the current working directory of the
shell.

cwroot Specify the current working root of the shell.

? Specify the exit status returned by the last
command executed.

The shell gives initial values to all the above variables. The
values persist across invocations of NUX Startup even if the vari­
able is not exported (see export in the section "Built-in Com­
mands"). There is a limit on the number of variables that can ex­
ist. The limit is normally 20, but can be changed by modifying a
resource.

Program Execution Environment
The shell interprets each line of input as a single command. The
first word in the command line is interpreted as the name of the
command to be executed.

If a command name matches one of the special commands built
into the shell (see the section "Built-in Commands"), it is execut­
ed in the shell process. If the command name does not match a
special command, a search for a program of the same name occurs
in the search paths stored in the PATH variable.

February, 1990 3
Revision C

StartupShell(8) StartupShell(8)

4

The command name is passed as argument 0 to the executing pro­
gram. Most of the words following the first word in the command
line are passed as arguments to the program invoked. The excep­
tions are words in positions that are subject to special interpreta­
tion because of nearby special characters (see the preceding sec­
tion "Input").

You can define multiple search paths within the PATH variable by
separating them with a vertical bar (I). The default search path is

(mac) : I (mac) : bin:

This specifies the same folder as NUX Startup and a Macintosh
folder bin, within the same folder as startup, in that order.

If you enter a command that includes a pathname, as signified by a
leading / or (, the search paths in PATH are not used. Otherwise,
each directory in the search paths is searched for an executable
file.

The current "environment" (see environ(5» is also passed to
each program when invoked. The environment consists of a list of
variable names and variable values. The shell maintains the en­
vironment in several ways. On invocation, the shell reads the en­
vironment from a Macintosh resource. Using the built-in com­
mands, you can modify the values of any of these variables or
create new variables. Unless variables are exported (or re­
exported) with expo rt, neither their names nor their current
values are placed in the environment. Once a variable has been
placed in the environment, you can use the unexport or unset,
command to remove it.

The environment used by an executing program is thus composed
of any unmodified name-value pairs originally read by the shell,
minus any pairs removed by unexport and unset, plus any
new assignments (or reassignments) that have been added through
expo rt commands.

Redirection
The input and the output of a command may be redirected (de­
tached from the console) using specially interpreted characters.
The process is called redirection and the special characters are
called redirection symbols when used for this purpose. Redirec­
tion symbols can also introduce the names of files that are used as
the source of input or the destination of output. These redirection
symbols and their associated filenames are not passed as argu-

February, 1990
RevisionC

StartupShell(8) StartupShell(8)

ments to the invoked program. Each of the constructions affects
processing as described in the following list

<word Use file word as standard input (file descriptor
0).

>word

»word

< & digit

Use file word as standard output (file descriptor
1). If the file does not exist, it is created; other­
wise, it is truncated to a length of O.

Use file word as standard output. If the file ex­
ists, output is appended to it (by first seeking to
the end-of-file); otherwise, the file is created.

Use the file associated with file descriptor digit
as standard input. Similarly, >&digit uses the
file associated with the file descriptor digit as the
standard output

< & - The standard input is closed. Similarly, standard
output is closed by using> & -.

If any of the above are preceded by a digit, the file descriptor is
specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

associates file descriptor 2 with the file currently associated with
file descriptor 1.

The order in which redirections are specified is significant. The
shell evaluates redirections from left to right. For example,

... l>word 2>&1

first associates file descriptor 1 with file word. It associates file
descriptor 2 with the file associated with file descriptor 1 (word).
If the order of redirections were reversed, file descriptor 2 would
be associated with the terminal (assuming file descriptor 1 had
been) and file descriptor 1 would be associated with file word.

The environment passed to an executing program contains the
same file descriptors as the shell, except those modified by input
and output redirections on the command line.

Built-in Commands
Built-in commands do not invoke corresponding programs that re­
side in a file system. Rather, the shell interprets such commands
and their arguments all by itself. For these built-in commands, in­
put and output redirection is permitted. Without redirection, the

February, 1990
Revision C

5

StartupShell(8) StartupShell(8)

6

console is the default output location for standard output and error
output. More precisely, file descriptor 1 is the default output loca­
tion, and error output is permanently directed to the console,
bypassing stderr (file descriptor 2).

auto [name]
Set each of the named variables to be automatic. When en­
tered at the start of a command line, the name of the automat­
ic variable is replaced with its value. To avoid substitution
when entering the name of an automatic variable at the start
of a command line, precede (escape) the first word with a
backs lash (\). If entered without any arguments, auto
displays a list of all automatic variables and their values.

autolauneh [arg] ...
Execute the command string that has been assigned to the
autolauneh variable. It cannot be unset or converted into
a normal variable, so it consistently behaves like a built-in
function. When entered, autolauneh executes whatever
has been assigned to it. The assignment
autolauneh=launeh causes the startup program named
launeh(8) to be executed when autolauneh is entered.

autoreeovery [arg ...]
Executes the command string that has been assigned to the
autoreeovery variable. It cannot be unset or converted
into a normal variable, so it consistently behaves like a built­
in function. When entered, autoreeovery executes what­
ever has been assigned to it.

boot
Execute the autoreeovery and autolauneh command
strings. If the autoreeovery command string fails (? is
set to a nonzero exit value), autolauneh is not started.
This command hides the shell window and shows you a pro­
gress bar dialog box.

ed [path]
ehdir [path]

Change the current directory to that specified by path. If no
argument is specified, the value of HOME is used as the
specification for path.

ehroot [path]
Change the current root to that specified by path. If no argu­
ment is specified, the value of ROOT is used as the

February, 1990
Revision C

StartupShell(8) StartupShell(8)

specification for path.

default
Display the default SCSI ID which contains (SCSI ID, 0, 0).

echo [args]
Display args after (unescaped) command and variable sub­
stiutions take place.

eject [drive]
Eject the disk in the enumerated disk drive. The drive
number is either 0 or 1.

exit
Quit NUX Startup. (Same as choosing the Quit from the
File menu.)

export [names]
Export each of the named variables so that the variable and
its present value become a part of the program execution en­
vironment. The present value is saved between invocations
of s tart up. If no names are specified, expo rt lists all
exported variables along with their present values.

help [command]
Display the help associated with command.

powerdown

pwd

Shut the system power off (same as choosing the Shut Down
item from the Execute menu).

Print the current working directory, which is also the value of
the variable cwd.

readonly [names]
Set each of the named variables to be read-only. Read-only
variables can't be reset through reassignments. However, the
variable can be unset and then redefined. If no names are
specified, readonly displays all the read-only variables
along with their values.

restart

set

Restart the system (same as choosing the Restart item from
the Execute menu).

Display all variables and their values.

February, 1990
Revision C

7

Start upShell (8) StartupShell(8)

8

shutdown
Shut down the machine (same as the choosing the Shut Down
item from the Execute menu).

unauto [names]
Remove the automatic attribute from each of the named vari­
ables.

unexport [names]
Remove the export attribute from each of the named vari­
ables.

unset [names]
Remove each of the named variables. None of the built-in
shell variables can be unset.

Menus
What follows are descriptions of the effect of each menu item. If
the menu item presents a dialog box, then each field of the dialog
box is also described.

Apple Menu
About NUX Startup ...

Help

Display a window with some information about NUX Start­
up, including the use of the help function to obtain help in­
formation.

Print the default help message in the shell window. The
message contains enough information for users to get more
help by using the help function.

Desk Accessories
Display a menu of the desk accessories currently installed on
the system file located in the Macintosh file system from
which the system was started. (Desk accessories stored in an
NUX file system won't be available until A/UX is running.)

File Menu
Close

Quit

Close the currently active window. However, the shell win­
dow cannot be closed.

Quit NUX Startup (same as the exi t command).

February, 1990
RevisionC

StartupShell(8) StartupShell(8)

Edit Menu
Undo
Cut
Copy
Paste
Clear

Except for Copy, these menu items are present only for use
with desk accessories. The shell window only allows Copy,
when a range of text is selected.

Execute Menu
Boot

Perform the autorecovery and autolaunch command
strings (same as the boot command).

AutoRecovery
Perform the command string that has been assigned to au­
torecovery. Identical to the autorecovery command
with no arguments.

AutoLaunch
Perform the command string that has been assigned to aut 0-

launch. (same as the autolaunch command with no ar­
guments except that the progress bar dialog box is shown).

Kill Halt the currently running startup application. COMMAND­
PERIOD and COMMAND-K are keyboard shortcuts for this.

Restart
Restart the machine (same as the restart command).

ShutDown
Shut the system off (same as the shutdown command).

Preferences Menu
Booting ...

Present a dialog box that allows you to set various startup
parameters associated with the boot command (and the
Boot menu item in the Execute menu).

Eject disks on Launch
When this check box is checked, all floppy disks are automat­
ically ejected at the time the NUX kernel is launched. This
value is stored in a Macintosh resource.

Automatically Boot at startup
When this check box is checked, the shell automatically runs
the boot command when launched, causing the NUX ker-

February, 1990 9
Revision C

StartupShell(8) StartupShell(8)

10

nel to boot as a part of the launching of NUX Startup. This
value is stored in a Macintosh resource.

AutoRecovery Command
This text box displays the value of the built-in
autorecovery variable. This value can be changed by
selecting the text box and editing it.

AutoLaunch Command
This field displays the value of the built in autolaunch
variable. The value can be changed by selecting this text box
and editing the text displayed.

General ...
Present a dialog box containing miscellaneous items the user
may want to change.

RootDirectory
This text box displays the value of the built-in ROOT vari­
able.The value can be changed by selecting the text and
editing it.

Home Directory
This text box displays the value of the built-in HOME vari­
able. The value can be changed by selecting the text and
editing it.

Cluster Number
This text box displays the value of the autorecovery cluster
number. Refer to autorecovery(8) for an explanation of
what this number does. The value is stored in nonvolatile
RAM (see nvram(7)).

Devices, Partitions, and Pathnames
In the NUX environment, you access multiple file systems by
mounting file systems (block device files) on accessible direc­
tories. The NUX Startup environment does not support mount.
Instead, the A/UX path name syntax has been extended with an op­
tional prefixed device specification. A device specification has ei­
ther the form (S, D, P) ; where S, D, and P are integers identify­
ing a SCSI ID, disk (or logical unit), and partition respectively, or
the special prefix "(default)." The prefix (default) refers to the
disk containing the version of A/UX Startup that is currently run­
ning.

February, 1990
RevisionC

StartupShell(8) StartupShell(8)

When no device specification is used, the path is integrated rela­
tive to the current directory or current root (as the path is relative
or absolute). chroot always changes the current directory to be
the new root

Character and block device files are not supported, because they
depend on a mapping between device major numbers and devices,
which is specific to the NUX kernel. However, with respect to
the following special files, the open system call (see open(2»
does cause fake device files to be opened in raw (character) mode,
but their inodes are outside the normal file system space. All other
device files cannot be opened from the A/UX Startup environ­
ment These device files are:

/dev/console
/dev/syscon
/dev/systty
/dev/dsk/cSdDsP
/dev/rdsk/cSdDsP
/dev/null
/dev/floppy[O,l]
/dev/rfloppy[O,l]

where S, D, and P are integers corresponding to those in a device
specification (SCSI ID, device zero, and slice number, respective­
ly).

Disk partitions are assigned slice number. The slice numbers are
restricted to the range 0-31. Essentially the slice numbers act as a
user-controlled cache of partitions. Three partitions are assigned
slice numbers automatically: the root partition to 0, the swap par­
tition to 1, and the usr partition to 2. The way root, swap, and usr
partitions are recognized depends on the autorecovery cluster
number and the block 0 blocks (bzb) in the disk-partition-map en­
tries (dpme). Slice number 31 always refers to the entire disk.
You may also explicitly associate partitions and slice numbers by
using pname. See gd(7) , autorecovery(8), dpme(4),
bzb(4), and pname(lM) for more details.

The following is an example of a device specification and path­
name:

(1,O,2)/include/sys/param.h

February, 1990 11
Revision C

StartupShell(8) StartupShell(8)

12

This denotes the file paramo h in the directory / sys that is in the
directory / incl ude that is in the root directory of the file system
located in the partition associated with slice 2 of the device with
SCSIID 1.

Programs
The following programs have been converted to run under the
NUX Startup shell:

cat
chgrp
chmod
chown
cp
cpio
date
dd
dp
ed
esch
fsck

fsdb
kconfig
launch
In
Is
mkdir
mkfs
mknod
mv
newfs
od
pname

read-disk
rm
stty
tar

Concatenate and print files.
Change the group.
Change the mode.
Change the owner.
Copy files.
Copy file archives in and out.
Print and set the date ..
Convert and copy a file.
Perform disk partitioning.
Edit text.
Run the autorecovery program.
Check and interactively repair the file sys­
tem.
Debug a SVFS or a UPS file system.
Change a kernel's variables for tuning.
Launch an NUX kernel.
Make links.
List the contents of directory.
Make directories.
Construct a System V file system.
Build a device file.
Move or rename files.
Construct a UPS file system.
Perform an octal dump.
Associate named partitions with device
nodes.
Simplified disk reader for install.
Remove files or directories.
Set the options for a terminal.
File archiver.

Except for launch, esch, and read-disk, each command is
an NUX command rewritten for the A/UX Startup shell environ­
ment. For more information about the basically equivalent com­
mands, refer to the other sections of this manual and Section 1 of

February, 1990
RevisionC

StartupShell(8) StartupShell(8)

the A/UX Command Reference.

Variables
None of the built-in variables may be unset or have their attributes
changed. Between invocations of A/UX Startup, any reassign­
ments made for built-in variables will persist.

Name Attribute Default Comment
Value

? 0 Not assignable

autorecovery auto echo no autorecovery

cwd Not assignable

cwroot (default)! Not assignable

HOME export !
autolaunch auto launch

PATH export (mac)sl(mac):bin:

PSl startup#

ROOT export (default)!

TZ export PST8PDT

Macintosh Resources
There are several resources in the resource fork of A/UX Startup
that may be of interest. All nonstandard resources have associated
ResEdit template (TMPL) resources so that they can be edited.
One should not edit anything other than the STRL/config resource
and the SASH/variables resource. (SASH stands for Startup Ap­
plication Shell.)

February, 1990 13
Revision C

StartupShell(8) StartupShell(8)

Name Type 10 Description

version SASH 0 A standard version string.

state SASH 1

variables SASH 2
Miscellaneous state variables, use SASH template.

Saved variables, exported and built-in, use VARL
template.

help SASH 3 All the help text, use WSTR template.

*

*

ERRL * Connects internal error numbers to problem
description and action strings, use ERRL tem­
plate.

STRL * Lists of strings identified by numeric tags, use
S1RL template.

config S1RL 134 A list of strings which are in the following order:
font name, font size, maximum number of vari­
ables, and kilobytes of memory for running start-
up programs.

WARNINGS
When using this shell, you are effectively running as superuser, so
there is no permission checking. Everything is accessible and
very few actions are disallowed.

BUGS
The fake character device files (! dev / rxxxx) are a bad idea and
should be changed. Being required to attach partitions to slices is
also bad. Backspacing over tab characters looks wrong on the
screen.

Running the 1 s command on / dev reports erroneous information
for the device files mentioned above. However, you can see the
correct information by prefixing a device specification to the
directory.

SEE ALSO

14

dp(lM), pname(1M), bzb(4), dpme(4), environ(5), gd(7),
autorecovery(8),launch(8).
A/UK Command Reference.

February, 1990
RevisionC

THE APPLE PUBLISHING SYSTEM

This Apple manual was written, edited, and composed
on a desktop publishing system using Apple
Macintosh ® computers and troff running on A!UX.
Proof and fmal pages were created on Apple
LaserWriter® printers. POSTSCRIPT®, the page­
description language for the LaserWriter, was
developed by Adobe Systems Incorporated.

Text type and display type are Times and Helvetica.
Bullets are Irc Zapf Dingbats®. Some elements, such
as program listings, are set in Apple Courier.

Writers: J. Eric Akin, Mike Elola, George Towner, and
Kathy Wallace

Editor: George Truett
Production Supervisor: Josephine Manuele
Acknowledgments: Lori Falls and Michael Hinkson

Special thanks to Lorraine Aochi, Vicki Brown,
Sharon Everson, Pete Ferrante, Kristi Fredrickson,
Don Gentner, Tim Monroe, Dave Payne, Henry Seltzer,
and John Sovereign

030-0779

